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Deep Learning via RESNET-50 Architecture – A Case for 
interconnecting GPUs

▪ Classification of land cover in scenes in Remote Sensing

▪ Very suitable for parallelization via distributed training on 
multi GPUs

▪ RESNET-50 is a known neural network architecture that has established a strong 

baseline in terms of accuracy

▪ The computational complexity of training the RESNET-50 architecture relies in the 

fact that is has ~ 25.6 millions of trainable parameters

▪ RESNET-50 still represents a good trade-off between accuracy, depth and number 

of parameters

▪ The setups of RESNET-50 makes it very suitable for parallelization via distributed 

training on multi GPUs

[20] 
RESNET

Distributed Training with Multi GPU Usage using 
Horovod

[5] Horovod

▪ Horovod is a distributed training framework used in combination with low-

level deep learning frameworks like Tensorflow

▪ Horovod uses MPI for inter-process communication, e.g., MPI_Allreduce()

▪ Distributed training using data parallelism approach means: (1) Gradients for 

different batches of data are calculated separately on each node; (2) But 

averaged across nodes to apply consistent updated to the deep learning 

model in each node

24 nodes x 4 GPUs = 96 GPUs

A partition of the JUWELS system 
has 56 compute nodes,

each with 4 NVIDIA V100 GPUs
(equipped with 16 GB of memory)

Horovod distributed training via MPI_Allreduce()



Outline of the Course

1. High Performance Computing

2. Parallel Programming with MPI

3. Parallelization Fundamentals

4. Advanced MPI Techniques

5. Parallel Algorithms & Data Structures

6. Parallel Programming with OpenMP

7. Hybrid Programming & Patterns

8. Debugging & Profiling & Performance Analysis

9. Accelerators & Graphical Processing Units

10. Parallel & Scalable Machine & Deep Learning

11. HPC in Health & Neurosciences

12. Computational Fluid Dynamics & Finite Elements

13. Systems Biology & Bioinformatics

14. Molecular Systems & Material Sciences

15. Terrestrial Systems & Climate

16. Epilogue

+ additional invited lectures by experts & practical 
lectures for our hands-on assignments in context

▪ Practical Topics

▪ Theoretical / Conceptual Topics
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Lecture Outline

• Jupyter-JSC: Bringing HPC to the Browser
• Access to HPC Resources

• Hardware Resources

• Applications of HPC in Healthcare
• Different Approaches for Different Types of Data

• RNN vs. CNN

• LSTMs and GRUs

• Sequence Data Use Case: ARDS

• Image Processing Use Case: Covid-Net

• Systems Biology and Biological Signalling Pathways

• HPC in Neuroscience
• Neuroscience Expectation vs. Reality

• Applications of Image Processing in Neuroscience

• Neuroscience Technology Framework Use Case: The Big Brain Project
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Access to HPC Resources
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• Access granted through an online account 
on JuDoor, and through specific projects 
with registered HPC budgets.

• JupyterLab: a browser-based modular 
development environment.

• Jupyter-JSC: a JupyterLab implementation 
with integrated access to HPC resources:
• Expandable hardware model.

• Pre-installed Machine Learning modules.

• Out of the box GPU integration.

• Access to remote storage clusters.

https://jupyter-jsc.fz-juelich.de/

https://judoor.fz-juelich.de/



HPC Hardware Resources
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https://www.deep-projects.eu/

▪ Data Analytics Module (DAM)

▪ Specific requirements for data science & 
analytics frameworks

▪ 16 nodes with 2x Intel Xeon Cascade Lake; 24 
cores

▪ 1x NVIDIA V100 GPU / node
▪ 1x Intel STRATIX10 FPGA PCIe3 / node
▪ 384 GB DDR4 memory / node
▪ 2 TB non-volatile memore / node

▪ DAM Prototype

▪ 3 x 4 GPUs Tesla Volta V100
▪ Slurm scheduling system

JUWELS Supercomputer



Icelandic HPC Community – Simulation & Data Lab 
Health & Medicine

[22] IHPC SimDataLab Health & Medicine Web Page

Seeking for new members
from health & medicine

experts that leverage HPC

[25] SMITH Project Web Page

relatively low HPC & AI usage still,
strict regulations for AI

data silos: no data sharing,
GDPR & reiterating clinical studies

[24] O.Maassen et al., Future Medical Artificial Intelligence Application Requirements and Expectations of 
Physicians in German University Hostpitals: Web-based Survey, Journal of Medical Internet Research, 2021

[23] Alfred Winter, M. Riedel et al., ‘Smart Medical Information Technology for Healthcare (SMITH):
Data Integration based on Interoperability Standards’, Journal of Methods of Information in Medicine, 2018
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Applications of HPC in Healthcare
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Different Approaches for Different Data Types
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• Input data for machine learning 
applications come in different types:
• Numerical Data

• Image Data (single- or multi-dimensional)

• Sequence Data (text, sound, seismic 
waves, physiological signals)

• Specific Machine Learning approaches 
have been developed to take advantage 
of each data type.

• One ML approach that is effective on 
one datatype may not be effective for 
another.

MNIST Dataset

Hyperspectral Data

Sequence Data



Recurrent Neural Networks (RNN)
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• Convolutional Neural Networks (CNNs)
• Example: remote sensing application 

domain, hyperspectral datasets

• Neural network key property: 
exploit spatial geometry of inputs

• Approach:  Apply convolution & pooling 
(height x width x feature) dimensions

• RNNs 
• Examples: texts, speech, time series datasets

• Neural network key property:
exploit sequential nature of inputs

• Approach: Train a graph of ‘RNN cells‘ & each cell performs 
the same operation on every element in the given sequence

ht

RNN model

Xt

▪ RNNs are used to create sequence models whereby the occurrence of an element in the sequence (e.g. text, 
speech, time series) is dependent on the elements that appeared before it

[7] A. Rosebrock



Advanced Applications of RNNs (1)
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Advanced Applications of RNNs (2)
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▪ Long Short Term Memory (LSTM) networks are a special kind of Recurrent Neural Networks (RNNs) 
that learn long-term dependencies in data by remembering information for long periods of time.

▪ LSTM introduce a ‘memory cell‘ structure into the underlying basic RNN architecture using four key 
elements: an input gate, a neuron with self-current connection, a forget gate, and an output gate

▪ The data in the LSTM memory cell flows straight down the chain with some linear interactions (x,+)

▪ The cell state st can be different at each of the LSTM model steps & modified with gate structures

▪ Linear interactions of the cell state are pointwise multiplication (x) and pointwise addition (+)

▪ In order to protect and control the cell state st three different types of gates exist in the structure
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▪ Gated Recurrent Units (GRUs) are a simpler 
version of LSTMs that offer comparable 
performance with reduced computational 
cost.



Medical Timeseries Data Analysis
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• Sequence data, by definition, entails that the order of the 
data is important, but also that future values depend on 
past values.

• Medical data (heart rate, blood oxygen levels, drug 
concentrations…) is a specific example where it is 
extremely beneficial to be able to draw predictions and 
diagnosis from timeseries data.

• These timeseries are usually quite long, spanning days or 
weeks, and far too difficult to be analysed.

• Digitisation made it possible to store this data in 
Electronic Health Records (EHRs), thus building large 
databases full of information to be mined and to develop 
diagnosis and treatment methods.

https://www.philips.de/healthcare/



Respiratory Disease 
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• Respiratory diseases can have several causes including 
trauma, viral or bacterial infections, etc.

• Their effects are wide-ranging, including blood acidosis as 
oxygen levels in blood drop, increased heart rate, 
decrease blood pressure and a cascade of events that can 
lead to multi-organ failure.

• Treatment usually begins with mechanical ventilation 
which also causes stress to the lungs potentially causing 
injury and subsequently collapsed compartments or 
thrombosis.

• ICU staff usually have protocols to deal with lung injury 
but they are very subjective, and can vary within the same 
institute, and from one hospital to another.

[6] Wang et al.

Obstructive 
Lung Disease

Restrictive 
Lung Disease

Chronic 
Respiratory 

Disease

Respiratory 
Tract 

Infection

Respiratory 
Disease



Use Case: SMITH and ARDS
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• Acute Respiratory Distress Syndrome (ARDS) is a rare 
condition that affects ICU patients, but has a high 
mortality rate.

• There is consensus on how to diagnose the condition, but 
not how to treat it.

• This is one of the use cases of the Smart Medical 
Information Technology for Healthcare (SMITH) 
consortium grouping major research institution in 
Germany.

• The aim is to develop algorithms that can efficiently and 
accurately diagnose the onset of ARDS, and potentially 
provide suggestions for treatment.



Where HPC Comes into the Equation
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• For a Mechanistic model to be able to diagnose 
and treat, it needs to learn and that requires 
data:
• The largescale analysis, cleaning, and preparation of 

data requires well adapted resources for storage and 
processing.

• Running multiple simulations with each patient’s 
data to understand how small changes in 
parameters affect their overall state take up a lot of 
time.

• Exporting this data and using it to train a numerical 
model requires efficient processing resources.

• Solution: use available HPC Resources!

[8] Th. Lippert & M. Riedel et al.

▪ Simulation and analysis have to go hand in hand in order to build 
proper modelling techniques.

▪ HPC simplifies and accelerates the process.



Use Case: COVID-NET
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• Given the Covid-19 pandemic, a lot of research 
was done in order to provide effective screening 
of Covid-infected patients.

• COVID-NET is a CNN trained on a database of 
Chest X-Ray (CXR) images in order to distinguish 
between healthy, pneumonia, and Covid-19 
patients.

• The results were compared to VGG-19 and 
ResNet-50 and highlighted the effectiveness of 
COVID-NET.

[6] Wang et al.

Healthy Patient Covid-19 Patient



Where HPC Comes into the Equation
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• The original CXR database contained 13.975 
images divided as show in Table 1.

• Proposed project was to confirm the initial 
results, and then apply transfer learning by 
training the network on new data from a different 
dataset.

• Data provided by E-Healthline consists of 1.066 
images for training and 4.115 images for testing.

• Partial use of the data to test out the approach 
shown in Table 2.

• Data storage and training done using the 
resources available on the DEEP cluster and 
eventually on the JUWELS cluster (Fastest 
Supercomputer in Europe).

Healthy Pneumonia Covid-19

# of Images 8.066 5.538 358

Table 1: COVIDx Database Image Distribution

▪ Transfer Learning: applying a pretrained 
network on a new problem that has new 
data.

Healthy Pneumonia Covid-19

Train 198 21 85

Test 1.700 97 101

Total 1.898 118 186

Table 2: E-Healthline Database Image Distribution



Current Real World Applications
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HPC in Neurosciences
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The Face of Neuroscience
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Co-Design via Requirements from Machine/Deep Learning Applications & Innovative Simulation Sciences

https://www.deep-projects.eu/

▪ Neuroscience was one of the core concepts 
of the HPC design.

Lecture 11 – HPC Applications in Health and Neurosciences

Impacts of Artificial Intelligence in HPC Design

22 / 34
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How a Data Science Platform Comes Together
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• Before we use HPC for Neuroscience applications, we 
need to set up the infrastructure for data storage, 
management, and processing.

• Before employing compute and storage resources, we 
need to establish protocols for data and software 
communication and versioning.

• Before that, we need to have the proper software 
modules for the task at hand.

• But first and foremost, we need to have the proper 
hardware resources that can load this software, 
communicate the data, and perform the required tasks.
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Container Management – Docker Example

• Open-Source ‘containerization of software‘ tool
• Docker container enable a software to be ready-to-run

• ‘Container images‘ contain everything that is needed to run:
source code, runtime, system tools, specific libraries, data, 
etc.

• Enables flexibility and portability on where the 
application software is able to run (‘towards a standard‘)

• Basis for specific offerings (e.g. Ubercloud & Engineering)

[9] Docker Web page

▪ The core idea of Docker is to provide a software container with all required 

software elements that guarantees that the application within the software 

container will always run the same way, regardless of the environment it is 

running in or which cloud infrastructure is used underneath

▪ Docker is an open-source tool that automates the deployment of applications 

within so-called software containers that can be bundled as a Docker image 

and broadly used in Clouds today

▪ Docker enables an easier migration for applications from one cloud to another

[10] Ubercloud CFD
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Virtualization vs. Container Approaches

• Virtualization (high storage footprint)
• VMs include application, binaries, libraries and an

entire guest operating system (≈tens of GBs)

• Containers (low storage footprint, vendor-lock free)
• Include application, all dependencies, runs isolated, but 

share kernel of the operating system with other 
containers (vendor independence)

[9] Docker Web page

[10] Ubercloud CFD
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Software and Data Versioning – DataLad Example

➢ Great source: DataLad itself offers a massive amount of information about the technology and its usage: handbook.datalad.org

https://www.datalad.org/ 
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DataLad – How it Works

▪ Built on top of Git & Git-annex versioning tool

▪ Version-controlling arbitrarily large content:

version control data & software alongside to code

▪ Transport mechanisms for sharing & obtaining data:

consume & collaborative on data analysis like software

▪ Computationally reproducible data analysis:

track & share provenance of all digital objects

▪ Interesting for large datasets (e.g. CFD simulations)

• Free open-source data management tool

• Usable via command-line 
or for developers also via APIs in Python

https://www.datalad.org/ 

➢ Great source: DataLad itself offers a massive amount of information about the technology and its usage: handbook.datalad.org
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The Big Brain Project
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https://bigbrainproject.org/index.html
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