Neural Networks & Deep Learning

PARALLEL & SCALABLE MACHINE LEARNING & DEEP LEARNING

Prof. Dr. — Ing. Morris Riedel

Associated Professor
School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland

Research Group Leader, Juelich Supercomputing Centre, Forschungszentrum Juelich, Germany

HHHHHHHHH H I DA HELMHOLTZ . in @Morris Riedel @ @MorrisRiedel Y

Information & Data Science Academy

HDS!

LECTURE 2

Artificial Neural Network Learning Model & Backpropagation

November 04, 2020 i e
. ’ .'....o i e **\"'1 ' .||.‘1||\|“\
oninetecure (it M e EOSC L o T\

@@ " NorpiC % ADMIRE

“g RSI 7'4),

;\ UNIVERSITY OF ICELAND ‘ LICH
)&5 SCHOOL OF ENGINEERING AND NATURAL SCIENCES J U
r5a3d Forschungszentrum

S,

Setme (IDEEP HELMHOLTZAI|Sas sisen

CENTRE

FACULTY OF INDUSTRIAL ENGINEERING,
MECHANICAL ENGINEERING AND COMPUTER SCIENCE

Review of Lecture 1 — Introduction to ML & Perceptron Learning Model

linear combination
activation function of input data

! !

m
y=g 1*wo+zﬂﬁi*wz‘

T T =1

non-linear

- g=glwo+X"w

Output Bias T Constants
s T1 w1 necessary reshaping & normalization
X = : W=
Tm W
(Dense (Softmax (output
. \ Input Trainable L b bl .
r Data Weights ayer) prooani |t|eS)
’
Tensor N R
\\ ,/
[5] Tensorflow worker A N
Web page oru] v Multi Output == -—-
client ——— master Perceptron: , y: .
worker B ~91,01% (20 y: \\
Keras Epochs) ’ SN
[6] Keras .
Web page (input m = 784) (10 neurons sum (softmax (NB_CLASSES = 10)
with 10 bias) activation)

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

2/50

Outline of the Course

1. Introduction to Machine Learning & Perceptron Learning Model

2. Artificial Neural Network Learning Model & Backpropagation

3. Deep Learning & Convolutional Neural Network Learning Model

4. Using Artificial Neural Networks & Convolutional Neural Networks

= Practical Topics

= Theoretical / Conceptual Topics

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 3/50

Outline

= Supervised Learning & Statistical Learning Theory

» Formalization of Supervised Learning & Mathematic Building Blocks Continued
Understanding Statistical Learning Theory Basics & PAC Learning
Infinite Learning Model & Union Bound
Hoeffding Inequality & Vapnik — Chervonenkis (VC) Inequality & Dimension
Understanding the Relationship of Number of Samples & Model Complexity

= Artificial Neural Networks & Backpropagation
= Conceptual Idea of a Multi-Layer Perceptron
Artificial Neural Networks (ANNs) & Backpropagation
Problem of Overfitting & Different Types of Noise
Validation for Model Selection as another Technique against Overfitting
Regularization as Technique against Overfitting

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 4/73

Supervised Learning & Statistical Learning Theory

O
O

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 5/73

Unknown Target Function Elements we

not exactly
f X =Y (need to) know
(ideal f

i

nction)

<________-—

Elements we

.. must and/or
Training Examples should have and
X s | X that might raise

(17y1)a :(N’yN) huge demands
(historical records, gropndtruth data, examples) S

Learning Algorithm (‘train a system’) Final Hypothesis

g~ f

Hvpothesis Set

H=A_{h}; geH

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 6/73

Feasibility of Learning — Probability Distribution

u PFEdICt OUtpUt frOm fUtU re |nput Unknown Target Function
(fitting existing data is not enough) iAoy
= |n-sample ‘1000 points’ fit well

= Possible: Out-of-sample >= ‘1001 point’
doesn‘t fit very well

<___________——

= Learning ‘any target function’ Training Examples
is not feasible (can be anything) (X35 U1)s o (X5 Uy)
= Assumptions about ‘future input’
= Statement is possible to o
define about the data outside
the in-sample data (x,,%.), -+, (Xn, Yn) (which exact
= All samples (also future ones) are X = (T,,...,7,)¢ ~ probability
derived from same ‘unknown probability’ distribution P on X 's not important,
but should not be
completely
Statistical Learning Theory assumes an unknown probability distribution over the input space X random)

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 7/73

Feasibility of Learning — In Sample vs. Out of Sample

= Given ‘unknown’ probability P° on X :
= Given large sample N for (x,,%,), - (Xy,¥y)

Statistical Learning
Theory part that
enables that

= There is a probability of ‘picking one point or another’ :ﬁa;":fcf’bfbfiﬁ;f'e
= ‘Error on in sample” is known quantity (using labelled data): E. (h) sense (P on X)

= ‘Error on out of sample’ is unknown quantity: £ (h)
= |n-sample frequency is likely close to out-of-sample frequency €, tracksE,,

depend on
which E (h)
hypothesis h Eout (h) o
. out of M é 6 o0 C -
different ones - -’ ‘in sample’ E h
- @ ([Pon X ot
) 09| |
i use for predict! use E; (h) as a proxy thus the other
‘out of sample’ way around in learning

H = {%1;---7hm}; Eout (h) ~ Em(h’)

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 8/73

Feasibility of Learning — Union Bound & Factor M

= Assuming no overlaps in hypothesis set ——
= Apply very ‘poor mathematical rule ‘union bound’ g~ f
= (Note the usage of g instead of h, we need to visit all)

Think if E;, deviates from E_,, with more than tolerance € it is a ‘bad event’ in order to apply union bound

Pr [‘ Ez'n(g) - Eout(g) ‘ > F‘] <= Pr [‘ E (h'l) - Eout(h'l) ‘ > €

1T

‘visiting M
or ‘ Em(hz) - Eom(hz) ‘ > € .. different
hypothesis’ = The union bound means
or ‘ Ef” (hM) N E"“t(hM) ’ - €] that (for any countable set
M of m ‘events’) the
Pr [|E (9)—FE _(9)|>¢] <= Z Pr [| B, (hyn)—E ,(hy) | > €] probability that at least one
— of the events happens is
m=1 not greater that the sum of
M ., fixed quantity for each hypothesis the probabilities of the m
Pr [| E,, (g) - b, (9) | > € } <= Z 272N btained from Hoeffdings Inequality individual ‘events
m=1

o + _9¢2N problematic: if M is too big we loose the link
Pr [‘ Ein (g) o Eout (g) ‘ - €] <= 2Me between the in-sample and out-of-sample

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 9/73

Feasibility of Learning — Modified Hoeffding’s Inequality

= Errors in-sample E. (g) track errors out-of-sample £, (g)
= Statement is made being ‘Probably Approximately Correct (PAC)’
= Given M as number of hypothesis of hypothesis set 7
= “Tolerance parameter’inlearning €

= Mathematically established via ‘modified Hoeffdings Inequality”:

(original Hoeffdings Inequality doesn‘t apply to multiple hypothesis)
‘Approximately’ ‘Probably’

Pr[| E.(9) = E,(9) | >e] <= 2Me >

‘Probability that E;, deviates from E_, by more than the tolerance € is a small quantity depending on M and N

out

» Theoretical ‘Big Data’ Impact - more N = better learning
= The more samples N the more reliable will track £/, (9) E (g) well
= (But: the ‘quality of samples’ also matter, not only the number of samples)
» For supervised learning also the ‘label’ has a major impact in learning (later)

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

[1] Valiant, ‘A Theory
of the Learnable’, 1984

Statistical Learning
Theory part describing
the Probably
Approximately Correct
(PAC) learning

10/73

Unknown Target Function
f: XY

(ideal fuinnction)

<__________-

Training Examples

(x17 yl)’ e (XN’ yN)

(historical records, gropndtruth data, examples)

Learning Algorithm (‘train a system‘)

Hypothesis Set

H=A_{h}; geH

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

Probability Distribution

Pon X

Final Hypothesis

g~ f

Elements we
not exactly
(need to) know

‘constants’
in learning

Elements we
must and/or
should have and
that might raise
huge demands
for storage

11/73

Mathematical Building Blocks (4) — Our Linear Example

(infinite M decision boundaries depending on f) Probability Distribution

Pon X

e AS

Is this point very likely from the same distribution or just noise?

T, Je—

We assume future points are taken from the
same probability distribution as those that
. we have in our training examples

Training Examples

(%, 01); o0 (X,)

Is this point very likely from the same distribution or just noise?

(we help here with the assumption for the samples) (we do not solve the M problem here)
—2e2N
Pr[| E,(9) - E,..(9) | >€e] <= 2Me

(counter example would be for instance a random number generator, impossible to learn this!)

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 12/73

Statistical Learning Theory — Error Measure & Noisy Targets

= Question: How can we learn a function from (noisy) data?

= ‘Error measures’ to quantify our progress, the goal is: h ~ f
= Often user-defined, if not often ‘squared error”:

e(h(x), f(x)) = (h(x) — f(x))? e

= E.g. ‘point-wise error measure’

= ‘(Noisy) Target function’is not a (deterministic) function (e think movie rated now and in 10 years from now)

= Getting with ‘same x in‘ the ‘same y out’ is not always given in practice
= Problem: ‘Noise’ in the data that hinders us from learning

= Statistical Learning
= |dea: Use a ‘target distribution’ Theoryefinssithe
. (. (Unknown Target Distribution ‘f;(|) learning problem
instead of ‘target function YIx) of learning an

target function ’ . X — }f lus noise
5 f P unknown target

(ideal function) distribution

= E.g. credit approval (yes/no)

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 13/73

Unknown Target Bustetinnion P
y|x
target function f . X — Y plus noise (|)

(ideal fuinction)

<_______..__

Training Examples

(XI’ yl)’ ot (XI\” yN)

Probability Distribution

Pon X

|

T,)e— X

Error Measure

(historical records, grolindtruth data, examples)

Learning Algorithm (‘train a system’)

pd
~

Hypothesis Set

H=1{h}; geH

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

>e(x)€—

Final Hypothesis

g=f

Elements we
not exactly
(need to) know

‘constants’
in learning

Elements we

must and/or
should have and
that might raise
huge demands

for storage

14 /73

Mathematical Building Blocks (5) — Our Linear Example

= |terative Method using (labelled) training data (x,,v,), ..., (X, ¥y)

(one point at a time is picked)

1. Pick one misclassified y=+1 W + VX
training point where:
. T Error Measure
sign(w' X) # vy, o (a) w «
. . (a) addingavector or
2. Update the weight vector:) ¢ piracting a vector
W< W+ 1y X
noon Error Measure y = -1
(y, is either +1 or -1) a
W
= Terminates when there are (b) X
no misclassified points
(converges only with linearly seperable data) W—=yX

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 15/73

Training and Testing — Influence on Learning

= Mathematical notations

= Testing follows: p B B - o g 2N
(hypothesis clear) r || E.,(g) wt(9) | > €] e

= Training follows: g2
(hypothesis search) Pr [| Em(g) - Eout(g) | > f] <= 2Me >N

= Practice on ‘traini Ng exam ples’ (e.g. student exam training on examples to get E, ,down’, then test via exam)
= Create two disjoint datasets
= One used for training only Training Examples
(aka training set) (X0, 41)s o (X Yy)
= Another used for testing only (historical records, groundtruth data, examples)

(aka test set)

" Training & Testing are different phases in the learning process
= Concrete number of samples in each set often influences learning

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 16 /73

Theory of Generalization — Initial Generalization & Limits

= Learning is feasible in a probabilistic sense

= Reported final hypothesis — using a ‘generalization window on [. (g)
= Expecting ‘out of sample performance’ tracks ‘in sample performance’

= Approach: [] (g) actsasa ‘proxy‘for E (g)

E,.(9)=E,(9)

This is not full learning — rather ‘good generalization’ since the quantity E_(g) is an unknown quantity

= Reasoning
= Above condition is not the final hypothesis condition: Final Hypothesis
= More similiar like F__,(g) approximates 0 g~

(out of sample error is close to 0 if approximating f)
= F . (g)measures how far away the value is from the ‘target function’
= Problematic because E/_ , (g) is an unknown quantity (cannot be used...)
= The learning process thus requires ‘two general core building blocks’

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

17 /73

Theory of Generalization — Learning Process Reviewed

= ‘Learning Well’
= Two core building blocks that achieve Eout (g) approximates O

= First core building block
= Theoretical result using Hoeffdings Inequality £, ,(g) =~ E. (g)
= Using lv . (g) directly is not possible — it is an unknown quantity

= Second core building block (try to get the ‘in-sample” error lower)
= Practical result using tools & techniques toget E. (g) ~ 0
= e.g. linear models with the Perceptron Learning Algorithm (PLA)
= Using E..(9) is possible —it is a known quantity — ‘so lets get it small’
= Lessons learned from practice: in many situations ‘close to 0 impossible

Full learning means that we can make sure that E_ (g) is close enough to E; (g) [from theory]
Full learning means that we can make sure that E; (g) is small enough [from practical techniques]

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 18/73

Complexity of the Hypothesis Set — Infinite Spaces Problem

Pr [| E,(9) = E..(9) | >¢] <= 2Me ™

theory helps to find a way to deal
with infinite M hypothesis spaces

" Tradeoff & Review
= Tradeoff between €, M, and the ‘complexity of the hypothesis space H’
= Contribution of detailed learning theory is to ‘understand factor M’

= M Elements of the hypothesis set 7 M elements in H here

Ok if N gets big, but problematic if M gets big = bound gets meaningless
E.g. classification models like perceptron, support vector machines, etc.
Challenge: those classification models have continous parameters

= Consequence: those classification models have infinite hypothesis spaces

Aproach: despite their size, the models still have limited expressive power

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

Many elements of the
hypothesis set H have
continous parameter
with infinite M
hypothesis spaces

19/73

Factor M from the Union Bound & Hypothesis Overlaps

t [B (@)= B, (9) | >¢] <=Pr [| E, ()~ B, () | >e assumes no
overlaps, all
or ‘ Em(hg) Eom(hg) ‘ > € ... probabilities
happen
or | E, (hy)— E,, (har) | >¢€] disjointly

T [| Em (g) — E’Omt (g) | > €] <= 2J\/fe_262N takes no overlaps of M hypothesis into account

= Union bound is a ‘poor bound’, ignores correlation between h
= Qverlaps are common: the interest is shifted to data points changing label

(at least very often,
| Em (hl) | Em (h2) out (hg) | indicator to reduce M) = Statistical
Learning
‘unimportant’ ‘important’ Theory
provides a
quantity able
to characterize
the overlaps
for a better
bound

OUt

»\»

change in areas change in data label

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 20/73

Replacing M & Large Overlaps

(Hoeffding Inequality) (Union Bound) (towards Vapnik Chervonenkis Bound)

(|

~

ah
N

(valid for 1 hypothesis) (valid for M hypothesis, worst case) (valid for m (N) as growth function)

" Characterizing the overlaps is the idea of a ‘growth function’

= Number of dichotomies: My (N) = max s x,...x, [HX, Xy, 00 X)|
Number of hypothesis but
on finite number N of points

= Much redundancy: Many hypothesis will reports the same dichotomies

" The mathematical proofs that m,(N) can replace M is a key part of the theory of generalization

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 21/73

Complexity of the Hypothesis Set — VC Inequality

Pr[| E,(9)— E,.(9) | >e] <= 2Me 2N
m’H(N) — ma’Xxl 1 Xog e Xy ‘H(XU Xza Tt XN)‘

= Vapnik-Chervonenkis (VC) Inequality
= Result of mathematical proof when replacing M with growth function m
= 2N of growth function to have another sample (2x E_(h) no £, ,(h))

i

(9) | > €] <= 4my(2N)e /3N

(characterization of generalization)
" |n Short —finally : We are able to learn and can generalize ‘ouf-of-sample’

Pr [| Ezn(g) —E

out

" The Vapnik-Chervonenkis Inequality is the most important result in machine learning theory
" The mathematial proof brings us that M can be replaced by growth function (no infinity anymore)
= The growth function is dependent on the amount of data N that we have in a learning problem

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 22/73

Complexity of the Hypothesis Set — VC Dimension & Model Complexity

= Vapnik-Chervonenkis (VC) Dimension over instance space X
= VC dimension gets a ‘generalization bound’ on all possible target functions

Issue: unknown to ‘compute’ — VC solved this using the growth function on different samples

(‘generalization error’) Eout (g)

A

Error E (h)

Eout(h) L .

N Y
——————— G L A A A A
''''''''' model _ - “first sample’

________ complexity G W
’’’’’’ . &

-
f”
-

e
e
-

(“training error’)

e 0°

‘out of sample’

E,, ()
000080

/’ u
/ . mn second sample
[[]
= . .
. VC dimension dy, idea: “first sample’ frequency
d VC close to ‘second sample’ frequency

Complexity of Hypothesis set H can be measured by the Vapnik-Chervonenkis (VC) Dimension dy¢
Ignoring the model complexity d, leads to situations where E; (g) gets down and E_(g) gets up

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

23 /73

Different Models — Hypothesis Set & Model Capacity

Hypothesis Set

H=A{h}; geH
H = {hlj,hm},

(all candidate functions
derived from models
and their parameters)

= Choosing from various model approaches h,, ..., h_ is a
different hypothesis

= Additionally a change in model parameters of h,, ..., h,
means a different hypothesis too

" The model capacity characterized by the VC Dimension
helps in choosing models

. Occam’‘s Razor rule of thumb: ‘simpler model better‘ in
any learning problem, not too simple!

‘select one function’ Final Hypothesis
that best approximates g = f

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

,'LQ

l' . ¥ -
T T -’ . i T T T
-3 2 -1 1 3 4 5 6
14 N -

(e.g. support vector machine model)

output

(activation
function)

input nodes X, (bias)
(representing the threshold)

(e.g. linear perceptron model)

(e.g. artificial neural network model)

24 /73

[Video] Prevent Overfitting for better Generalization

[2] YouTube Video, Stop Overfitting

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 25/73

Artificial Neural Networks & Backpropagation

O
O

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 26/73

Model Evaluation — Testing Phase & Confusion Matrix

= Model is fixed

= Modelis just used with the testset
= Parameters are set

= Evaluation of model performance
= Counts of test records that are incorrectly predicted
= Counts of test records that are correctly predicted
= E.g. create confusion matrix for a two class problem

Counting per sample Predicted Class
Class =1 Class=0

Actual Class =1 fq g

Class Class=0 for 59

(serves as a basis for further performance metrics usually used)

Lecture 5 — Supervised Learning — Artificial Neural Networks & Learning Theory 27 /73

Model Evaluation — Testing Phase & Performance Metrics

Counting per sample Predicted Class
Class=1 Class=0

Actual Class = 1 fi flo (190% accuracy in Iearning ofte_n
cl points to problems using machine
ass Class=0 for T learning methos in practice)

number of correct predictions

Accuracy = —
J total number of predictions

number of wrong predictions

Error rate =
total number of predictions

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 28 /73

Unknown Target Distribution P (y ‘ X) Probability Distribution Elements v;/e
not exactly
target function f . X — Y plus noise P on X (need to) know
(ideal function) \L
1
1
1 v ‘
= X = ($1’ "'7$d)€ X .constan.ts
! in learning
1
MNIST dataset \=/ \” Elements we
— must and/or
Tralnlng Examples Error Measure should have and
(XU 'yl)’ ey (XNJ yN) ﬁe(x)@ that might raise
huge demands
(historical records, gropindtruth data, examples) for storage

Learning Algorithm (‘train a system’)

Final Hypothesis

g=f

Hypothesis Set

H={h}; geH

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 29 /73

MNIST Dataset — A Multi Output Perceptron Model — Revisited (cf. Lecture 3)

Epoch 7/20
60000/60000 [I
Epoch 8/20
60000/60000 [I
Epoch 9/20
60000/60000 [I
Epoch 10/20
60000/60000 []
Epoch 11/20
60000/60000 [I
Epoch 12/20
60000/60000 [I
Epoch 13/20
60000/60000 [I
Epoch 14/20
60000/60000 [I
Epoch 15/20
60000/60000 [I
Epoch 16/20
60000/60000 [I
Epoch 17/20
60000/60000 [I
Epoch 18/20
60000/60000 [I
Epoch 19/20
60000/60000 [I
Epoch 20/20
60000/60000 [I

model evaluation

26us/step
26us/step
25us/step
26us/step
26us/step
25us/step
26us/step
25us/step
25us/step
24us/step
25us/step
25us/step
25us/step

24us/step

score = model.evaluate (X test, Y test, verbose=VERBOSE)

print ("Test score:", score[0]
print ('Test accuracy:', score[l]

10000/10000 []
Test score: 0.33423959468007086
Test accuracy: 0.9101

- Os

4lus/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

L4419

L4271

L4151

.4052

.3968

.3896

.3832

L3777

L3727

.3682

.3641

.3604

.3570

.3538

acc:

acc:

acc:

acc:

.8838

.8866

.8888

.8910

.8924

.8944

.8956

.8969

.8982

.8989

.9001

.9007

.9016

.9023

(Dense (Softmax (output
Layer) probabilities)
\ s’
\ ’
\\ ,/
\
,/
4 \\
4 \\
4 ~
(input m = 784) (10 neurons sum (softmax (NB_CLASSES = 10)
with 10 bias) activation)

Multi Output
Perceptron:
~91,01% (20

Epochs)

How to improve the model design by extending the neural network topology?
Which layers are required?

Think about input layer need to match the data — what data we had?

Maybe hidden layers?

How many hidden layers?

What activation function for which layer (e.g. maybe RelLU)?

Think Dense layer — Keras?

Think about final Activation as Softmax - output probability

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

30/73

Different Models — Hypothesis Set & Choosing a Model with more Capacity

Hypothesis Set

H=A{h}; geH
H = {hlj,hm},

(all candidate functions
derived from models
and their parameters)

= Choosing from various model approaches h,, ..., h_ is a
different hypothesis

= Additionally a change in model parameters of h,, ..., h,
means a different hypothesis too

" The model capacity characterized by the VC Dimension
helps in choosing models

. Occam’‘s Razor rule of thumb: ‘simpler model better‘ in
any learning problem, not too simple!

S L) -
hi 17
'1' L v

(e.g. support vector machine model)

output

h 2
(activation
function)

input nodes X, (bias)
(representing the threshold)

(e.g. linear perceptron model)

‘select one function’ Final Hypothesis
that best approximates g = f

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

(e.g. artificial neural network model)

31/73

Artificial Neural Network (ANN)

= Simple perceptrons fail: ‘not linearly seperable’

0
1
0
1

Labelled Data Table

0
0
1
1

-1
1
1
-1

Decision Boundary

(Idea: instances can be classified using
two lines at once to model XOR)

Two-Layer, feed-forward Artificial Neural Network topology

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

32/73

Multi-Layer Perceptron (MLP) using Non-linearities

LS 'fa"‘.%’ 2,335 4 .
it R
| R B i FIRST HIDDEN SECOND HIDDEN
Tmpniaatd agy WS INPUT LAYER LAYER
: e LAYER
OUTPUT
LAYER
Linear Activation functions produce linear Non-linearities allow us to approximate
decisions no matter the network size arbitrarily complex functions

Gy

WINNER TAKES
ALL
DECISION RULE

FEATURE VECTOR OF PATTERN X
CLASS ESTIMATE FOR PATTERN X

" Forward interconnection of several layers of perceptrons
= MLPs can be used as universal approximators
. In classification problems, they allow modeling nonlinear discriminant functions

[8] MIT Deep Learning
= Interconnecting neurons aims at increasing the capability of modeling complex input-output relationships

Lecture 2 - Artificial Neural Network Learning Model & Backpropagation 33/73

Activation Functions to Choose From

= Facts

= The choice of the architecture and the
activation function plays a key role in
the definition of the network

= Each activation function takes a

sigmoid tanh

single number and performs a oL sl .
certain fixed mathematical operation on it 1 i
h(z) = — h(z) = tanhz
1+e?
soﬂPIus

leaky RELU

[9] Understanding Neural Networks

5 10

h(z) = log(1 + e%)

h(z) = max(z, za)
0<ax<l1

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

RELU

h(z) = max(z,0)

ELU

z,z>0
h(z) = {a(ez —1)z<0

34/73

Backpropagation Algorithm using Optimization

1

J(wg,wq) °
1. Initialize weights randomly ~\"(0, a%)
i 2. Loop until convergence
wy 3 e z 3. Pick batch of B data points
E WINNER TAKES E B, W) B W)
£ ox S . Lw) 1 L;(W
DECISION RULE 3 — - fuitnl_1. i}
§ — 4. Compute gradient —°/==—>¥}_;— =
o H
z 7) aLw
SGD g g 5. Update weights W =W —p w)
Momentum g 3 ow
NAG 6. Return weights
Adagrad
Adadelta

Rmsprop

TOTAL NUMBER OF
TRAINING SAMPLES

. DESIRED OUTPUT
Y (TARGET) VALUE FOR
OUTPUT VALUE THE I-th SAMPLE

OBTAINED BY THE MLP
FOR THE i-th SAMPLE

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 35/73

MNIST Dataset — Add Two Hidden Layers for Artificial Neural Network (ANN)

= All parameter value remain the same as before

= We add N_HIDDEN as parameter in order to set 128 neurons in one
hidden layer — this number is a hyperparameter that is not directly

defined and needs to be find with parameter search

Hidden Layers Output

[3] big-data.tips, Input
‘Relu Neural Network’

[4] big-data.tips,
‘tanh’

parameter setup

NB_EPOCH = 20

BATCH_SIZE 128

NB_CLASSES 10 # number of outputs = number of digits
OPTIMIZER = SGD() # optimization technique

VERBOSE = 1

N_HIDDEN = 128 # number of neurons in one hidden layer

model Keras sequential
model = Sequential()

modeling step

2 hidden layers each N_HIDDEN neurons
model.add(Dense(N_HIDDEN, input_shape=(RESHAPED,)))
model.add (Activation('relu')) N
model.add(Dense (N_HIDDEN))
model.add(Activation('relu'))
model.add (Dense(NB_CLASSES))

add activation function layer to get class probabilities
model.add(Activation('softmax'))

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

(activation functions ReLU & Tanh)

model.add (Dense(N_HIDDEN))
model.add (Activation('relu'))

model.add(Dense(N_HIDDEN))
model.add (Activation('tanh'))

= The non-linear Activation function ‘relu‘ represents a so-called Rectified Linear Unit (ReLU)
that only recently became very popular because it generates good experimental results in
ANNs and more recent deep learning models - it just returns 0 for negative values and
grows linearly for only positive values

= Ahidden layer in an ANN can be represented by a fully connected Dense layer in Keras by
just specifying the number of hidden neurons in the hidden layer

36/73

Unknown Target Distribution P (y ‘ X) Probability Distribution Elements v;/e
not exactly
target function f . X — Y plus noise P on X (need to) know
(ideal function) \L
1
1
1 v ‘
= X = ($1’ "'7$d)€ X .constan.ts
! in learning
1
MNIST dataset \=/ \” Elements we
— must and/or
Tralnlng Examples Error Measure should have and
(XU 'yl)’ ey (XNJ yN) ﬁe(x)@ that might raise
huge demands
(historical records, gropindtruth data, examples) for storage

Learning Algorithm (‘train a system’)

Final Hypothesis

g=f

Hypothesis Set

H={h}; geH

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 37/73

MNIST Dataset — ANN Model Parameters & Output Evaluation

Epoch 7/20

60000/60000 [==============================] -
Epoch 8/20

60000/60000 [==============================] -
Epoch 9/20

60000/60000 [==============================] -
Epoch 10/20

60000/60000 [==============================] -
Epoch 11/20

60000/60000 [==============================] -
Epoch 12/20

60000/60000 [==============================] -
Epoch 13/20

60000/60000 [==============================] -
Epoch 14/20

60000/60000 [==============================] -
Epoch 15/20

60000/60000 [==============================] -
Epoch 16/20

60000/60000 [==============================] -
Epoch 17/20

600@0/600@@ [::================::::::::::::] -
Epoch 18/20

60000/60000 [==============================] -
Epoch 19/20

60000/60000 [==============================] -
Epoch 20/20

60000/60000 [==============================] -

model evaluation

1s

1s

1s

1s

1s

1s

1s

1s

1s

1s

1s

1s

1s

1s

18us/step
18us/step
18us/step
18us/step
18us/step
18us/step
18us/step
18us/step
18us/step
18us/step
18us/step
18us/step
18us/step

18us/step

score = model.evaluate(X_test, Y_test, verbose=VERBOSE)

print("Test score:", score[0])
print('Test accuracy:', score[l])

10000/10000 [==============================] - @s 33us/step

Test score: 0.16286438911408185
Test accuracy: 0.9514

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

.2264 - acc: 0.9356

.2175 - acc: 0.9386

.2092 - acc: 0.9412

.2013 - acc: 0.9432

.1942 - acc: 0.9454

.2743 - acc: 0.9223

.2601 - acc: 0.9266

L2477 - acc: 0.9301

.2365 - acc: 0.9329

Input

.1876 - acc: 0.9472

.1813 - acc: 0.9487

.1754 - acc: 0.9502

L1700 - acc: 0.9522

.1647 - acc: 0.9536

printout a summary of the model to understand model complexity
model .summary ()

Layer (type) Output Shape Param #
dense_1 (Dense) (None, 128) 100480
Hidden Layers Output activation_1 (Activation) (None, 128) 0
. dense_2 (Dense) (None, 128) 16512
0
/ activation_2 (Activation) (None, 128) 0
7@ @
dense_3 (Dense) (None, 10) 1290
Y : :
AV .‘*-x activation_3 (Activation) (None, 10) 0
\
\ "I'AAH Ye
\ d Total params: 118,282

Trainable params: 118,282
Non-trainable params: 0

1
1
1
1

Multi Output Perceptron:

~91,01% (20 Epochs)
ANN 2 Hidden Layers:
~95,14 % (20 Epochs)

Dense Layer connects every neuron in this dense layer to the next
dense layer with each of its neuron also called a fully connected
network element with weights as trainiable parameters

Choosing a model with different layers is a model selection that
directly also influences the number of parameters (e.g. add Dense
layer from Keras means new weights)

Adding a layer with these new weights means much more
computational complexity since each of the weights must be
trained in each epoch (depending on #neurons in layer)

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

38/73

Machine Learning Challenges — Problem of Overfitting

= Key problem: noise in the target function leads to overfitting

= Effect: ‘noisy target function” and
its noise misguides the fit in learning

= There is always ‘some noise’ in the data

= Consequence: poor target function
(‘distribution’) approximation

(target)

(overfit)

(noise)

= Example: Target functions is second

order polynomial (i.e. parabola) _’
= Using a higher-order polynomial fit
= Perfect fit: low Em (g) , but large Eout (g) (but simple polynomial works good enough)

(‘over’: here meant as 4th order,
a 3" order would be better, 2" best)

" Overfitting refers to fit the data too well — more than is warranted — thus may misguide the learning
= Overfitting is not just ‘bad generalization® - e.g. the VC dimension covers noiseless & noise targets
. Theory of Regularization are approaches against overfitting and prevent it using different methods

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 39/73

Problem of Overfitting — Clarifying Terms

= Qverfitting & Errors
= £ (g) goes down

- Eout (g) goes up

» ‘Bad generalization area‘ ends
" Good toreduce g (g)

= ‘Overfitting area’ starts
= Reducing £, (g) does not help
= Reason ‘fitting the noise’

(‘generalization error’) E (
Error A out g)

(“training error’)

E, (9)

>

. . " .. Training time
bad generalization€< = 2 overfitting occurs

= A good model must have low training error (E;,) and low generalization error (E,)

" Model overfitting is if a model fits the data too well (E;,) with a poorer generalization error (E,)
than another model with a higher training error (E;,)

" The two general approaches to prevent overfitting are (1) validation and (2) regularization

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 40/73

Validation & Model Selection — Terminology

" ‘Training error’
= Calculated when learning from data (i.e. dedicated training set)

= ‘Test error’
= Average error resulting from using the model with ‘new/unseen data’
= ‘new/unseen data‘ was not used in training (i.e. dedicated test set)
* |n many practical situations, a dedicated test set is not really available

= ‘Validation Set’
. (split creates a two subsets of comparable size)
Split data into training & validation set = . _

= ‘Variance’ & “‘Variability’
» Result in different random splits (right)

(1 split) \ (n splits)

E : _“'\.,/_7\\’_ -/

Mean Squared Error
20 2 2

.........

" The ‘Validation technique‘ should be used in all machine learning or data mining approaches
= Model assessment is the process of evaluating a models performance i o
. Model selection is the process of selecting the proper level of flexibility for a model

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 41 /73

Validation Technique — Formalization & Goal

= Regularization & Validation * Valdation Is a very
important technique
= Approach: introduce a ‘overfit penalty’ that relates to model complexity to estimate the out-of-
, . , sample performance
= Problem: Not accurate values: ‘better smooth functions of a model

" Main utility of
regularization &
validation is to

Eout (h) — E (h) —|— overﬁt penalty (minimize both to be better proxy for E_,) control or avoid

in overfitting via model

1\ 1\ selection

(validation estimates (regularization estimates
this quantity) this quantity)

(regularization uses a term that captures the overfit penalty)

(measuring E_, is not possible as this is an unknown quantity,
another quantity is needed that is measurable that at least estimates it)

= Validation
= Goal ‘estimate the out-of-sample error’ (establish a quantity known as validation error)
= Distinct activity from training and testing (testing also tries to estimate the E,)

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 42 /73

= Understanding ‘estimate’E

Lecture 2 -

Validation Technique — Pick one point & Estimate E_,

L
TraininglExamples

|

: |
(X17y1)7'=‘?(XN7yN) :
G : —)
1 1

1 |

‘training set’ ‘test set’ |I<

out

(activity below is what we do for testing,
but call it differently for another purpose)

>

(involved in validation)

On one out-of-sample point(x,y) the erroris e(h(x),y)

E.g. use squared error: e(h(x), f(x)) = (h(x) — f(x))*

e(h(x),y) = (h(x) —y)’
Use this quantity as estimate for E_, (poor estimate)

Term ‘expected value’ to formalize (probability theory)

Probability Distribution

(Taking into account the theory of Lecture 1 with probability distribution on X etc.) Pon X

(aka ‘random variable’)

x=(x,,.1,)e—-

1D [e (h(X) : y)] — Eout (h) (aka the long-run average value of repetitions of the experiment)

(one point as unbiased estimate of E

out

Artificial Neural Network Learning Model & Backpropagation

that can have a high variance leads to bad generalization)

43 /73

Validation Technique — Validation Set

= Solution for high variance in expected values Ele(h(x).y)] = Eou(h)
" Take a ‘whple set” instead of just one point (x,y) for validation

Training=ExampIes

(X17y1)’ '|'7 (XN?yN)

| E—)

(involved in training+test) K (involved in validation) (we do the same approach with the
= |dea: K data points for validation testing set, but here different purpose)

(we need points not used in training
to estimate the out-of-sample performance)

K
(X1 , yl), ey (XK , yK) (validation set) Eml (h) = % Z e(h(x)k, yk) (validation error)
k=1

= Expected value to ‘measure’
the out-of-sample error

K
1
= ‘Reliable estimate’ if Kis large E[E ,(h)] = e ZE[e(h(X)k,yk)] = Eous
k=1

(expected values averaged over set)

(on rarely used validation set,

. . (this gives a much better (lower) variance than on a single point given K is large)
otherwise data gets contaminated)

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

Validation set consists of
data that has been not used
in training to estimate true
out-of-sample

Rule of thumb from practice
is to take 20% (1/5) for
validation of the learning
model

44 /73

Validation Technique — Model Selection Process

H :va%“]‘;?;etg cH (training not on 7‘[7‘[7‘[

full data set)

(set of candidate formulas across models) D
. Train = Model selection is
" Many different models 7y 1 (training) 1 lr choosing (a) different types
9,

. . of models or (b) parameter
Use validation error to ot ot sample 9, NS e D e
perform select decisions w.rt. D,)

‘pick the best'

= Model selection takes
= Careful consideration:
. ‘D . DYQZ (validate) (unbiased

advantage of the validation
l error in order to decide >

Picked means decided’ estlmates)

hypothesis has already \ Eyat, Foyats sz

bias (9 Contamination) (pick ‘best’ = bias) Y(decides model seIectlon)

= Using Dy, M times
%m* Evalm*
o - (test this on unseen data D (final real training
inal Hypothesis . .
g - f good, but depends on (final training on full set, use to get even better
m* ™ availability in practice) the validation samples too) g out-of-sample)
M, *

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 45 /73

ANN 2 Hidden 1/5 Validation — MNIST Dataset

" If there is enough data available one rule of thumb is to
take 1/5 (0.2) 20% of the datasets for validation only

= Validation data is used to perform model selection (i.e.
parameter / topology decisions)

parameter setup
NB_EPOCH = 20
BATCH_SIZE = 128
NB_CLASSES = 10 # number of:outputs = number of digits
OPTIMIZER = SGD() # optimleation technique
VERBOSE = 1 1
I_N_HTnnI:N_;) e e ol | e
\Y

1o.ana hidden Jlavor

AL_SPLIT = 0.2 # 1/5 for validation rule of thumb

model training

history = model.fit(X_train, Y_train, batch_size=BATCH_SIZE, epochs=NB_EPOCH, verbose=VERBOSE, Jvalidation_split = VAL_SPLIT)

Train on 48000 samples, validate on 12000 samples

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

The validation split parameter enables an easy
validation approach during the model training

(aka fit)

Expectations should be a higher accuracy for

unseen data since training data is less biased

when using validation for model decisions (check
statistical learning theory)

VALIDATION_SPLIT: Float between 0 and 1
Fraction of the training data to be used as
validation data

The model fit process will set apart this fraction of
the training data and will not train on it

Intead it will evaluate the loss and any model
metrics on the validation data at the end of each
epoch.

46 / 73

Problem of Overfitting — Clarifying Terms — Revisited

= Qverfitting & Errors
= £ (g) goes down
 E,,(g)goes up

» ‘Bad generalization area‘ ends
= Good to reduce Em (g)

= ‘Overfitting area’ starts
= Reducing £, (g) does not help
= Reason ‘fitting the noise’

(‘generalization error’) E (
Error A out g)

(“training error’)

E, (9)

>

. . " .. Training time
bad generalization€< = 2 overfitting occurs

= A good model must have low training error (E;,) and low generalization error (E,)

" Model overfitting is if a model fits the data too well (E;,) with a poorer generalization error (E,)
than another model with a higher training error (E;,)

" The two general approaches to prevent overfitting are (1) validation and (2) regularization

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 47 /73

Problem of Overfitting — Model Relationships

= Review ‘overfitting situations’
= When comparing ‘various models® and related to ‘model complexity’
= Different models are used, e.g. 2" and 4t order polynomial

= Same model is used with e.g. two different instances
(e.g. two neural networks but with different parameters)

(‘generalization error’) Eout (g)

= [ntuitive solution Error
= Detect when it happens

= ‘Early stopping regularization
term’ to stop the training

= Early stopping method

—
—

————————— model
,,,,,,,, complexity

-
4"
-

(“training error’)

L, (9)

>

(‘model complexity measure: the VC analysis was independent
of a specific target function — bound for all target functions‘)

= ‘Early stopping‘ approach is part of the theory of rear] .t y Training time
regularization, but based on validation methods (‘early stopping’)

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 48 / 73

Problem of Overfitting — ANN Model Example possible towards 99% Accuracy?

Input Hidden Layers Output

= Two Hidden Layers
= Good accuracy and works well

= Model complexity seem to
match the application & data

" Four Hidden Layers

]
Accuracy goes down A (‘generalization error’) 5, (g) : -
. E, d Error out . 1st possible Change:
in (g) gOES down Adding more layers means
- more model complexity
Eout (g) goesup— NN = 2 possible change:
= Significantly more weightstotrain | \ \ = _— model Longer training time to
. N S~ complexity enable better learning
= Higher model complexity | = «_~ » Questions remains: will it
In Hidden Layers ot | 000 X ‘ . . ¢ be useful to get towal'ds
put .. O I (“training error’) 99% accuracy?
X *}./ 3 o : 3 _-.--‘ \\. - /l - E (g)
o O O e e e | : "
X — X) ' . K -
_ [) @9 O < . Training time
: KX X T N@— (‘early stopping’)
" @ " KN BN S L

' ‘. .

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 49 /73

MNIST Dataset & Model Summary & Parameters

" Four Hidden Layers
= Each hidden layers has 128 neurons

Input Hidden Layers Crutpait

Layer (type) Output Shape Param #
dense 1 (Dense) (Nome, 128) 100480
activat;;;_l (Activatigas (None, 1255 ___0
dense_2_25ense) o (None, 1§§§ ___16512
activatggg_z (Activatigas (None, 1553 ___O
dense_3_25ense) o (None, 1§§§ ___16512
activat;;;_S (Activatigas (None, 1555 ___O
dense_4_25ense) o (None, 1§§§ ___16512
activat;;;_4 (Activatiggs (None, 1255 ___0
dense_S_EBense) o (None, 16;_ ___1290
activat;;;_S (Activatigas (None, 16;_ ___@

Total params: 151,306
Trainable params: 151,306
Non-trainable params: 0

K # printout a summary of the model to understand model complexity
model . summary ()

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

50/73

Exercises - Add more Hidden Layers — 4 Hidden Layers

Epoch 7/20
48000/48000 [==============================] - 1ls 24us/step - loss: 0.2614 - acc: 0.9237 - val_loss: 0.2364 - val_acc: 0.9323
Epoch 8/20
48000/48000 [==============================] - 1s 24us/step - loss: 0.2431 - acc: 0.9290 - val_loss: 0.2243 - val_acc: 0.9347
Epoch 9/20
48000/48000 [==============================] - 1ls 24us/step - loss: 0.2270 - acc: 0.9339 - val_loss: 0.2158 - val_acc: 0.9377
Epoch 10/20
48000/48000 [==============================] - 1ls 24us/step - loss: 0.2130 - acc: 0.9385 - val_loss: 0.1995 - val_acc: 0.9427
Epoch 11/20
48000/48000 [==============================] - 1ls 23us/step - loss: 0.2001 - acc: 0.9425 - val_loss: 0.1908 - val_acc: 0.9451
Epoch 12/20
48000/48000 [==============================] - 1ls 24us/step - loss: 0.1888 - acc: 0.9445 - val_loss: 0.1866 - val_acc: 0.9464
Epoch 13/20
48000/48000 [==============================] - 1s 24us/step - loss: 0.1783 - acc: 0.9479 - val_loss: 0.1750 - val_acc: 0.9497
Epoch 14/20
48000/48000 [==============================] - 1ls 24us/step - loss: 0.1701 - acc: 0.9507 - val_loss: 0.1675 - val_acc: 0.9529
Epoch 15/20
48000/48000 [==============================] - 1s 24us/step - loss: 0.1615 - acc: 0.9533 - val_loss: 0.1631 - val_acc: 0.9537
Epoch 16/20
48000/48000 [==============================] - 1ls 24us/step - loss: 0.1539 - acc: 0.9555 - val_loss: 0.1553 - val_acc: 0.9555
Epoch 17/20
48000/48000 [==============================] - 1s 24us/step - loss: 0.1469 - acc: 0.9575 - val_loss: 0.1536 - val_acc: 0.9558
Epoch 18/20
48000/48000 [==============================] - 1ls 24us/step - loss: 0.1405 - acc: 0.9590 - val_loss: 0.1505 - val_acc: 0.9560
Epoch 19/20
48000/48000 [==============================] - 1s 24us/step - loss: 0.1351 - acc: 0.9609 - val_loss: 0.1456 - val_acc: 0.9574
Epoch 20/20
48000/48000 [==============================] - 1s 24us/step - loss: 0.1295 - acc: 0.9625 - val_loss: 0.1398 - val_acc: 0.9600

model evaluation

score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print("Test score:", score[0])

print('Test accuracy:', score[l])

[T0000/ L0000 |---—-----------------------===] - 0s 33Us/step . -
Test score: ©.13893915132246912 = Training accuracy should still be above the
Test accuracy: 0.9571 test accuracy — otherwise overfitting starts!

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 51/73

Exercises - Add more Hidden Layers — 6 Hidden Layers

Epoch 7/20

48000/48000 [==============================] -
Epoch 8/20
48000/48000
Epoch 9/20
48000/48000
Epoch 10/20
48000/48000
Epoch 11/20
48000/48000 [==============================] -
Epoch 12/20

48000/48000 [==============================] -
Epoch 13/20

48000/48000 [==============================] -
Epoch 14/20

48000/48000 [==============================] -
Epoch 15/20

48000/48000 [==============================] -
Epoch 16/20
48000/48000
Epoch 17/20
48000/48000
Epoch 18/20
48000/48000
Epoch 19/20
48000/48000 [==============z===============] -
Epoch 20/20

4890@/4800@ |:================:::::::::::::=] —

model evaluation

1s

1s

1s

1s

1s

1s

1s

1s

1s

1s

1s

1s

28us/step
28us/step
28us/step
28us/step
28us/step
28us/step
28us/step
28us/step
28us/step
28us/step
28us/step
27us/step
27us/step

27us/step

score = model.evaluate(X_test, Y_test, verbose=VERBOSE)

print("Test score:", score[0])
print('Test accuracy:', score[l])

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

,2567 - acc: 0.9231 - val_loss: 0.2370 - val_acc: 0,
.2333 - acc: 0.9312 - val_loss: 0.2229 - val_acc: 0.
.2141 - acc: 0.9372 - val_loss: 0.1979 - val_acc: 0.
.1963 - acc: 0.9415 - val_loss: 0.1860 - val_acc: 0.
.1812 - acc: 0.9470 - val_loss: 0.1779 - val_acc: 0.
.1693 - acc: 0.9496 - val_loss: 0.1717 - val_acc: 0.
.1580 - acc: 0.9540 - val_loss: 0.1651 - val_acc: 0.
.1477 - acc: 0.9573 - val_loss: 0.1535 - val_acc: 0.
.1381 - acc: 0.9594 - val_loss: 0.1461 - val_acc: 0.
.1309 - acc: 0.9616 - val_loss: 0.1427 - val_acc: 0.
.1240 - acc: 0.9630 - val_loss: 0.1495 - val_acc: 0.
L1170 - acc: 0.9663 - val_loss: 0.1447 - val_acc: 0.
.1114 - acc: 0.9674 - val_loss: 0.1391 - val_acc: 0.

.1053 - acc: 0.9696 - val_loss: 0.1355 - val_acc: 0.

9311

9342

9429

9461

9487

9504

9543

9552

9577

9582

9573

9563

9587

9601

Test score: 0.13102742895036937
Test accuracy: 0.9614

TO000/ 10000 |--======m========sm==m=========] - 05 34US/SLep

Training accuracy should still be above the
test accuracy — otherwise overfitting starts!

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

52/73

Problem of Overfitting — Noise Term Revisited

= ‘(Noisy) Target function”is not a (deterministic) function
= Getting with ‘same x in” the ‘same y out’is not always given in practice

= |dea: Use a ‘target distribution’

instead of ‘target function’ Unknown Target Distribution P(y|x)
target function f . X — Y plus noise

(ideal function)
" Fitting some noise in the data
is the basic reason for overfitting
and harms the learning process (target)
. Big datasets tend to have more noise (overfit)
in the data so the overfitting problem _ |
might occur even more intense (n?.-'

= ‘Different types of some noise‘ in data
= Key to understand overfitting & preventing it
= ‘Shift of view": refinement of noise term ‘shift the view’
= Learning from data: ‘matching properties of # data’ (‘4 data view’)

(‘function view’)

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

53/73

Problem of Overfitting — Stochastic Noise

= Stoachastic noise is a part ‘on top of’ each learnable function
= Noise in the data that can not be captured and thus not modelled by f
= Random noise : aka ‘non-deterministic noise’

= Conventional understanding T
established early in this course targetfuncion f 1 X — Y plusnoise (ylx)
= Finding a ‘non-existing pattern (ideal function)

in noise not feasible in learning’

" Practice Example

= Random fluctuations and/or 5 l (target)

. (overfit)

measurement errors in data ‘ _ _

= Fitting a pattern that not exists ‘out-of-sample’ \ ot '\
= Puts learning progress ‘off-track’ and ‘away from f* \,

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

Stochastic noise here
means noise that can‘t be
captured, because it‘s just
pure ‘noise as is*

(nothing to look for) — aka
no pattern in the data to
understand or to learn from

54 /73

Problem of Overfitting — Deterministic Noise

= Part of target function f that H can not capture: f(x) — h*(x) - Deterministic noise here means
. o . noise that can‘t be captured,
= Hypothesis set H is limited so best h* can not fully approximate f because it is a limited model
%) . . . (out of the league of this
= h* approximates f, but fails to pick certain parts of the target f particular model), e.g. ‘learning
p . .yy . . ‘ with a toddler statistical learning
= ‘Behaves like noise’, existing even if data is ‘stochastic noiseless theory"

= Different ‘type of noise’ than stochastic noise
= Deterministic noise depends on 7—[(determines how much more can be captured by h*)

= E.g.same f, and more sophisticated 7{ : noise is smaller
(stochastic noise remains the same,
nothing can capture it)

= Fixed for a given X , clearly measurable
(stochastic noise may vary for values of X))

(f)
(h*)

(learning deterministic noise is outside the ability to learn for a given h*)

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 55/73

Problem of Overfitting — Impacts on Learning

= Understanding deterministic noise & target complexity
" |ncreasing target complexity increases deterministic noise (at some level)
" |ncreasing the number of data N decreases the deterministic noise

= Finite N case: H tries to fit the noise
= Fitting the noise straightforward (e.g. Perceptron Learning Algorithm)
= Stochastic (in data) and deterministic (simple model) noise will be part of it

= Two ‘solution methods’ for avoiding overfitting

= Regularization: ‘Putting the brakes in learning’, e.g. early stopping
(more theoretical, hence ‘theory of regularization’)

= Validation: ‘Checking the bottom line’, e.g. other hints for out-of-sample
(more practical, methods on data that provides ‘hints’)

The higher the degree of the polynomial (cf. model complexity), the more degrees of freedom are
existing and thus the more capacity exists to overfit the training data

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 56 /73

High-level Tools — Keras — Regularization Techniques

" Keras is a high-level deep learning library implemented in Python that works on top of existing other
rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

= The key idea behind the Keras tool is to enable faster experimentation with deep networks
" Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

keras.layers.Dropout (rate, . . :
¥ P ¢ " Dropout is randomly setting a fraction of

noise_ shape=None, input units to 0 at each update during
seed=None) training time, which helps prevent overfitting
(using parameter rate)

" L2 regularizers allow to apply penalties on

from keras import regularizers layer parameter or layer activity during
del.add (D 64 i dime64 optimization itself — therefore the penalties
model.add (Dense (64, input dim=64, are incorporated in the loss function during

kernel regularizer=regularizers.12(0.01),
activity regularizer=regularizers.11(0.01)))

Keras

optimization

ANN — MNIST Dataset — Add Weight Dropout Regularizer

Input Hidden Layers Output

parameter setup
NB_EPOCH = 20

BATCH_SIZE = 128
NB_CLASSES = 10 # number of outputs = number of digits
OPTIMIZER = SGD() # optimization technique
VERBOSE = 1
N_HIDDEN = 128 # number of neurons in one hidden layer
VAL_SPLIT = 0.2 # 1/5 for validation rule of thumb
IDROPOUT = 0.3 # regularization }
\\
~
~
~
~
~
\\
modeling step S
2 hidden layers each N_HIDDEN neurons \\
model.add(Dense(N_HIDDEN, input_shape=(RESHAPED,)))\
model.add(Activation('relu')) S
model.add(Dropout (DROPOUT)) f= = m e S
- ~
model.add(Dense(N_HIDDEN)) “~—____ S
model.add(Activation('relu')) -~‘~-~-:-\.

| model.add(Droeout(DROPOUT)) '———————————————————-——

model.add(Dense (NB_CLASSES))

model.add(Activation('relu'))
model.add (Dropout (DROPOUT))

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

A Dropout() regularizer randomly drops
with ist dropout probability some of the
values propagated inside the Dense
network hidden layers improving
accuracy again

Our standard model is already modified in
the python script but needs to set the
DROPOUT rate

A Dropout() regularizer randomly drops
with ist dropout probability some of the
values propagated inside the Dense
network hidden layers improving
accuracy again

58/73

MNIST Dataset & Model Summary & Parameters

= Only two Hidden Layers but with Dropout
= Each hidden layers has 128 neurons

Input Hidden Layers Qutput Layer (type)

Output Shape Param #

dense 1 (Dense) (Nome, 128) 100480
;ctivation_l (Activation) (None, 128) 0
dropout_1 (Dropout) (None, 128) 0

aense_Z (Dense) (None, 128) 16512
;ctivation_z (Activation) (None, 128) 0
aropout_Z (Dropout) (None, 128) 0

aense_S (Dense) (None, 10) 1290
;ctivation_S (Activation) (None, 10) 0

Total params: 118,282
Trainable params: 118,282
Non-trainable params: 0@

printout a summary of the model to understand model complexity
model . summary ()

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

59/73

ANN — MNIST — DROPOUT (20 Epochs)

Epoch 7/20
48000/48000 [==============================] -
Epoch 8/20
48000/48000 [==============================] -
Epoch 9/206
48000/48000 [==============================] -
Epoch 10/20
48000/48000 [==============================] -
Epoch 11/20
48000/48000 [==============================] -
Epoch 12/20
48000/48000 [==============================] -
Epoch 13/20
48000/48000 [===========z====================] -
Epoch 14/20
48000/48000 [==============================] -
Epoch 15/20
48000/48000 [==============================] -
Epoch 16/20
48000/48000 [==============================] -
Epoch 17/20
48000/48000 [===========z====================] -
Epoch 18/20
48000/48000 [==============================] -
Epoch 19/20
48000/48000 [==============================] -
Epoch 20/20
48000/48000 [==============================] -

model evaluation

1s

1s

1s

B

1s

1s

1s

1s

1s

1s

1s

1s

1s

1s

22us/step
22us/step
22us/step
22us/step
22us/step
22us/step
22us/step
22us/step
22us/step
22us/step
22us/step
2lus/step
2lus/step

2lus/step

score = model.evaluate(X_test, Y_test, verbose=VERBOSE)

print("Test score:", score[0])
print('Test accuracy:', score[l])
10000/10000 [==============================] - @s 29us/step

Test score: 0.1994456141V847873
Test accuracy: 0.9404

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

0.4616 - acc: 0.8628 - val_loss: 0.3048 - val_acc: 0.9127
0.4386 - acc: 0.8688 - val_loss: 0.2896 - val_acc: 0.9172
0.4181 - acc: 0.8762 - val_loss: 0.2776 - val_acc: 0.9198
0.3990 - acc: 0.8838 - val_loss: 0.2657 - val_acc: 0.9234
0.3819 - acc: 0.8876 - val_loss: 0.2551 - val_acc: 0.9258
0.3688 - acc: 0.8920 - val_loss: 0.2465 - val_acc: 0.9283
0.3571 - acc: 0.8943 - val_loss: 0.2388 - val_acc: 0.9299
0.3466 - acc: 0.8991 - val_loss: 0.2319 - val_acc: 0.9323
0.3359 - acc: 0.9015 - val_loss: 0.2261 - val_acc: 0.9339
0.3244 - acc: 0.9055 - val_loss: 0.2180 - val_acc: 0.9352
0.3142 - acc: 0.9085 - val_loss: 0.2122 - val_acc: 0.9375
0.3103 - acc: 0.9095 - val_loss: 0.2076 - val_acc: 0.9390
0.3019 - acc: 0.9118 - val_loss: 0.2018 - val_acc: 0.9409

0.2931 - acc: 0.9132 - val_loss: 0.1974 - val_acc: 0.9419

Regularization effect not yet because too little training
time (i.e. other regularlization ,early stopping‘ here)

60 /73

ANN — MNIST — DROPOUT (200 Epochs)

Epoch 187/200

48000/48000 [==============================] - 1ls 2lus/step - loss: 0.0780 - acc: 0.9755 - val_loss: 0.0810 - val_acc: 0.9764
Epoch 188/200
48000/48000 [==============================] - 1ls 2lus/step - loss: 0.0795 - acc: 0.9753 - val_loss: 0.0799 - val_acc: 0.9765
Epoch 189/200
48000/48000 [==============================] - 1s 2lus/step - loss: 0.0774 - acc: 0.9763 - val_loss: 0.0802 - val_acc: 0.9763
Epoch 190/200
48000/48000 [==============================] - 1s 2lus/step - loss: 0.0773 - acc: 0.9770 - val_loss: 0.0799 - val_acc: 0.9758
Epoch 191/200
48000/48000 [==============================] - 1s 2lus/step - loss: 0.0746 - acc: 0.9771 - val_loss: 0.0804 - val_acc: 0.9762
Epoch 192/200
48000/48000 [==============================] - 1s 2lus/step - loss: 0.0761 - acc: 0.9771 - val_loss: 0.0805 - val_acc: 0.9762
Epoch 193/200
48000/48000 [==============================] - 1s 2lus/step - loss: 0.0750 - acc: 0.9772 - val_loss: 0.0800 - val_acc: 0.9763
Epoch 194/200
48000/48000 [==============================] - 1s 2lus/step - loss: 0.0753 - acc: 0.9766 - val_loss: 0.0804 - val_acc: 0.9767
Epoch 195/200
48000/48000 [==============================] - 1s 2lus/step - loss: 0.0748 - acc: 0.9768 - val_loss: 0.0799 - val_acc: 0.9767
Epoch 196/200
48000/48000 [==============================] - 1ls 2lus/step - loss: 0.0755 - acc: 0.9767 - val_loss: 0.0795 - val_acc: 0.9765
Epoch 197/200
48000/48000 [==============================] - 1s 2lus/step - loss: 0.0740 - acc: 0.9771 - val_loss: 0.0799 - val_acc: 0.9767
Epoch 198/200
48000/48000 [==============================] - 1s 2lus/step - loss: 0.0744 - acc: 0.9769 - val_loss: 0.0792 - val_acc: 0.9772
Epoch 199/200
48000/48000 [==============================] - 1s 2lus/step - loss: 0.0759 - acc: 0.9769 - val_loss: 0.0794 - val_acc: 0.9767
Epoch 200/200
48000/48000 [==============================] - 1s 2lus/step - loss: 0.0730 - acc: 0.9778 - val_loss: 0.0794 - val_acc: 0.9771

model evaluation
score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print("Test score:", score[0])

= Regularization effect visible by long training time

print(‘Test accuracy:', score[1]) using dropouts and achieving highest accuracy
10000/10000 [==============================] - @s 27us/st .
Test score: 0.07506137332450598 ° 2=l s Note: Convolutional Neural Networks: 99,1 %

Test accuracy: 0.9775

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 61/73

MNIST Dataset & SGD Method — Changing Optimizers is another possible tuning

= Gradient Descent (GD) 0 d
uses all the training b=a—%V f(a) b=a-— g e f(a) b=a-— i e f(a)
samples available for a da da
step within a iteration

. Stochastic Gradient i (all slightly different notations, but often used in different literature for same derivative term)

f(x =0 =0
Descent (SGD) converges) <d d>
faster: only one training Xineet = X1 = 7 —— (x,) Xaneat = Xz = 7| o~ £(x,)
samples used per 2 2
iteration (negative derivative (positive derivative
at point x,) at point x,)

- X1ineot = X1 — 77 * negative number
& X200t = X2 — 7 * positive number
negative
gradient

positive
gradient

X - Xinext Xonext _ X, X

[7] Big Data Tips,

from keras.optimizers import SGD ;
Gradient Descent

OPTIMIZER = SGD() # optimization technigue

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 62/73

MNIST Dataset & RMSprop & Adam Optimization Methods

RMSProp is an advanced optimization
technique that in many cases enable
earlier convergence

Adam includes a concept of momentum
(i.e. veloctity) in addition to the
acceleration of SGD

Epoch 7/20
48000/48000

Epoch 8/20
48000/48000

Epoch 9/20

48000/48000
Epoch 10/20

48000/48000
Epoch 11/20

48000/48000
Epoch 12/20
48000/48000

Epoch 13/20
48000/48000

Epoch 14/20

48000/48000
Epoch 15/20

48000/48000
Epoch 16/20

48000/48000
Epoch 17/20
48000/48000

Epoch 18/20
48000/48000

Epoch 19/20
48000/48000

Epoch 20/20

48000/48000

model evaluation

] - 1s 25us/step
1 - 1s 25us/step
1 - 1s 25us/step
] - 1s 25us/step
] - 1s 25us/step
1 - 1s 25us/step
] - 1s 25us/step
] - 1s 25us/step
1 - 1s 25us/step
] - 1s 25us/step
1] - 1s 25us/step
1 - 1s 26us/step
] - 1s 26us/step

] - 1s 26us/step

score = model.evaluate(X_test, Y_test, verbose=VERBOSE)

print("Test score:", score[0])
print('Test accuracy:', score[l])

10000/10000 [

Test score: 0.09596708530617616
Test accuracy: 0.9779

] - 0s 33us/step

from keras.optimizers import RMSprop

OPTIMIZER = RMSprop() # optimization technique

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

L1127

L1051

.0970

.0949

.0880

.0873

.0842

.0804

.0788

.0756

.0758

.0755

.0725

L0712

.9668

.9690

.9706

.9716

.9734

.9745

.9745

.9763

L9771

9772

L9776

.9781

.9784

L9791

val_loss:
val_loss:
val_loss:
val_loss:
val_loss:
val_loss:
val_loss:
val_loss:
val_loss:
val_loss:
val_loss:
val_loss:
val_loss:

val_loss:

.1014

.0984

.0996

.0958

.0945

.0957

.0952

.1002

.0991

.0988

.1033

.0996

.1055

.1014

val_acc:
val_acc:
val_acc:
val_acc:
val_acc:
val_acc:
val_acc:
val_acc:
val_acc:
val_acc:
val_acc:
val_acc:
val_acc:

val_acc:

.9723

.9735

.9747

.9754

.9763

.9761

9757

.9767

L9772

L9761

.9753

L9773

.9764

L9778

63/73

[Video] Overfitting in Deep Neural Networks

20 hidden neurons

vy overfitting

AR the student is, the more patterns he can memorize.

PAPERS

P »l o 2477433
[7] YouTube Video, Overfitting and Regularization For Deep Learning

64 /73

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

Lecture Bibliography

O
O 0

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 65 /67

Lecture Bibliography

= [1] Leslie G. Valiant, ‘A Theory of the Learnable’, Communications of the ACM 27(11):1134-1142, 1984, Online:
https://people.mpi-inf.mpg.de/~mehlhorn/SeminarEvolvability/ValiantLearnable.pdf
= [2] Udacity, ‘Overfitting’, Online:
https://www.youtube.com/watch?v=CxAxRCv9WoA
= [3] www.big-data.tips, ‘Relu Neural Network’, Online:
http://www.big-data.tips/relu-neural-network
= [4] www.big-data.tips, ‘tanh’, Online:
http://www.big-data.tips/tanh
= [5] Tensorflow, Online:
https://www.tensorflow.org/
= [6] Keras Python Deep Learning Library, Online:
https://keras.io/
= [6] www.big-data.tips, ‘Gradient Descent, Online:
http://www.big-data.tips/gradient-descent
= [7] YouTube Video, ‘Overfitting and Regularization For Deep Learning | Two Minute Papers #56’, Online:
https://www.youtube.com/watch?v=6aF9sJrzxaM
= [8] MIT 6.5191: Introduction to Deep Learning, Online:
http://introtodeeplearning.com/
= [9] Understanding the Neural Network, Online:
http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2019/www/hwnotes/HW1p1.html

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation 66 /67

=
£ S new
measurement F @ funding

services Policy-based “=

concepts

forms cross-disciplinary resources E

year, Computational &

Cross-Disciplinary

formats.

=
=
=]
E
RS
_g
2
o

SMAQ international
References

analysisoie”

use

7 computatlonal .

DLCLs Understandmg SthGtUI’BS
any Simulation

Prowde NAsﬁ Energy systems

Lecture 2 — Artificial Neural Network Learning Model & Backpropagation

3 d:§ access & = hundreds "' Services &
Technologies Earth i B3 Structure @ £
_%“ directory = 8 project General 3
day & Health @
a =)
=]
[

Eu R methods=

Science ;i

. brain increasing
databasesd a

est"é"é“é““f“éhf
“research o8 SCIenceHPc :

System Climate modelling =5 Hardware

MapReduce

device analysis

Iaﬂons§

W
frest
o
@
=
(5]

i EIJ external

alt

Summar
GI'IS
ervlc

=

Juelich %

System
compute D Landscape

a.-

network

8
Cent cllmate Computer expertise E E§
Computlﬂg ‘.‘.h disciplines rpgylts E_ gli Enable E
blg nodesa. ‘€ Enwronmefn]t 3 rh;loc::ellmg tb
nter ey scientific importan "
ce te S E storage ... Infrastructure i

ENES technologies

pag IPCC

EunATprocessmgmm]

computing vsins"F
msupercomputlng Work |mages
¢ S o Scientific :

1B

opean

i % often
§ performance
s datasets«

en

b

manag

67 / 67

