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Review of Lecture 1 – Introduction to ML & Perceptron Learning Model

[5] Tensorflow 
Web page

[6] Keras 
Web page

necessary reshaping & normalization

(Dense
Layer)

(output
probabilities)

(Softmax
Layer)

(NB_CLASSES = 10)(softmax
activation)

(10 neurons sum 
with 10 bias)

(input m = 784)

 Multi Output 
Perceptron: 
~91,01% (20 
Epochs)

Lecture 2 – Artificial Neural Network Learning Model & Backpropagation 2 / 50



Outline of the Course

1. Introduction to Machine Learning & Perceptron Learning Model

2. Artificial Neural Network Learning Model & Backpropagation

3. Deep Learning & Convolutional Neural Network Learning Model

4. Using Artificial Neural Networks & Convolutional Neural Networks

 Practical Topics

 Theoretical / Conceptual Topics
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Outline

 Supervised Learning & Statistical Learning Theory
 Formalization of Supervised Learning & Mathematic Building Blocks Continued
 Understanding Statistical Learning Theory Basics & PAC Learning
 Infinite Learning Model & Union Bound
 Hoeffding Inequality & Vapnik – Chervonenkis (VC) Inequality & Dimension
 Understanding the Relationship of Number of Samples & Model Complexity

 Artificial Neural Networks & Backpropagation
 Conceptual Idea of a Multi-Layer Perceptron
 Artificial Neural Networks (ANNs) & Backpropagation
 Problem of Overfitting & Different Types of Noise
 Validation for Model Selection as another Technique against Overfitting
 Regularization as Technique against Overfitting
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Supervised Learning & Statistical Learning Theory
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Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

Unknown Target Function

(ideal function)

Training Examples

(historical records, groundtruth data, examples)

Final Hypothesis

(set of candidate formulas)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(set of known algorithms)
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Feasibility of Learning – Probability Distribution

 Predict output from future input 
(fitting existing data is not enough)
 In-sample ‘1000 points‘ fit well
 Possible: Out-of-sample >= ‘1001 point‘ 

doesn‘t fit very well
 Learning ‘any target function‘

is not feasible (can be anything)
 Assumptions about ‘future input‘
 Statement is possible to 

define about the data outside 
the in-sample data 

 All samples (also future ones) are 
derived from same ‘unknown probability‘ distribution

Unknown Target Function

Training Examples

Probability Distribution

(which exact
probability

is not important,
but should not be

completely 
random)
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Feasibility of Learning – In Sample vs. Out of Sample

 Given ‘unknown‘ probability 
 Given large sample N for
 There is a probability of ‘picking one point or another‘
 ‘Error on in sample‘ is known quantity (using labelled data):
 ‘Error on out of sample‘ is unknown quantity:
 In-sample frequency is likely close to out-of-sample frequency

‘in sample‘

‘out of sample‘

use for predict!

 Statistical Learning 
Theory part that 
enables that 
learning is feasible 
in a probabilistic 
sense (P on X) 

use Ein(h) as a proxy thus the other 
way around in learning

depend on 
which

hypothesis h 
out of M

different ones

Ein tracks Eout
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Feasibility of Learning – Union Bound & Factor M

 Assuming no overlaps in hypothesis set 
 Apply very ‘poor‘ mathematical rule ‘union bound‘ 
 (Note the usage of g instead of h, we need to visit all)

Final Hypothesis

or
or

...

fixed quantity for each hypothesis
obtained from Hoeffdings Inequality

problematic: if M is too big we loose the link
between the in-sample and out-of-sample

‘visiting M
different
hypothesis‘

Think if Ein deviates from Eout with more than tolerance Є it is a ‘bad event‘ in order to apply union bound

 The union bound means 
that (for any countable set 
of m ‘events‘) the 
probability that at least one 
of the events happens is 
not greater that the sum of 
the probabilities of the m 
individual ‘events‘
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Feasibility of Learning – Modified Hoeffding‘s Inequality

 Errors in-sample                 track errors out-of-sample
 Statement is made being ‘Probably Approximately Correct (PAC)‘
 Given M as number of hypothesis  of hypothesis set 
 ‘Tolerance parameter‘ in learning 
 Mathematically established via ‘modified Hoeffdings Inequality‘:

(original Hoeffdings Inequality doesn‘t apply to multiple hypothesis)

 Theoretical ‘Big Data‘ Impact more N better learning
 The more samples N the more reliable will track                                    well
 (But: the ‘quality of samples‘ also matter, not only the number of samples)
 For supervised learning also the ‘label‘ has a major impact in learning (later)

 Statistical Learning 
Theory part describing 
the Probably 
Approximately Correct 
(PAC) learning

‘Probability that Ein deviates from Eout by more than the tolerance Є is a small quantity depending on M and N‘

‘Probably‘‘Approximately‘

[1] Valiant, ‘A Theory
of the Learnable’, 1984
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Unknown Target Function Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

(ideal function)

(historical records, groundtruth data, examples)

‘constants‘ 
in learning

Probability Distribution

Training Examples

Final Hypothesis

(set of candidate formulas)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(set of known algorithms)
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Mathematical Building Blocks (4) – Our Linear Example
(infinite M decision boundaries depending on f) Probability Distribution

P

Is this point very likely from the same distribution or just noise?

Is this point very likely from the same distribution or just noise?

P

(we do not solve the M problem here)(we help here with the assumption for the samples)

We assume future points are taken from the
same probability distribution as those that
we have in our training examples

Training Examples

(counter example would be for instance a random number generator, impossible to learn this!)
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Statistical Learning Theory – Error Measure & Noisy Targets

 Question: How can we learn a function from (noisy) data?
 ‘Error measures‘ to quantify our progress, the goal is:

 Often user-defined, if not often ‘squared error‘:

 E.g. ‘point-wise error measure‘

 ‘(Noisy) Target function‘ is not a (deterministic) function
 Getting with ‘same x in‘ the ‘same y out‘ is not always given in practice
 Problem: ‘Noise‘ in the data that hinders us from learning
 Idea: Use a ‘target distribution‘

instead of ‘target function‘
 E.g. credit approval (yes/no)

Error Measure

 Statistical Learning 
Theory refines the 
learning problem 
of learning an 
unknown target 
distribution

(e.g. think movie rated now and in 10 years from now)
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Unknown Target Function Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

Final Hypothesis

(ideal function)

(final formula)

(set of candidate formulas)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(set of known algorithms)

‘constants‘ 
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise

Training Examples

(historical records, groundtruth data, examples)
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Mathematical Building Blocks (5) – Our Linear Example

Error Measure

 Iterative Method using (labelled) training data 

1. Pick one misclassified 
training point where:

2. Update the weight vector: 

 Terminates when there are 
no misclassified points

(a) adding a vector  or
(b) subtracting a vector

x

w + yx

w

y = +1

y = -1

x

w – yx 

w

(converges only with linearly seperable data)

(one point at a time is picked)

(a)

(b)

(yn is either +1 or -1)
Error Measure
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Training and Testing – Influence on Learning

 Mathematical notations
 Testing follows: 

(hypothesis clear)
 Training follows:

(hypothesis search) 

 Practice on ‘training examples‘
 Create two disjoint datasets
 One used for training only

(aka training set)
 Another used for testing only

(aka test set)

 Training & Testing are different phases in the learning process
 Concrete number of samples in each set often influences learning 

(e.g. student exam training on examples to get Ein ‚down‘, then test via exam)

Training Examples

(historical records, groundtruth data, examples)
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Theory of Generalization – Initial Generalization & Limits

 Learning is feasible in a probabilistic sense
 Reported final hypothesis – using a ‘generalization window‘ on
 Expecting ‘out of sample performance‘ tracks ‘in sample performance‘
 Approach:                acts as a ‘proxy‘ for

 Reasoning
 Above condition is not the final hypothesis condition:
 More similiar like                   approximates 0 

(out of sample error is close to 0 if approximating f)
 measures how far away the value is from the ‘target function’
 Problematic because                 is an unknown quantity (cannot be used…)
 The learning process thus requires ‘two general core building blocks‘

Final Hypothesis

This is not full learning – rather ‘good generalization‘ since the quantity Eout(g) is an unknown quantity 
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Theory of Generalization – Learning Process Reviewed

 ‘Learning Well‘
 Two core building blocks that achieve                   approximates 0 

 First core building block
 Theoretical result using Hoeffdings Inequality
 Using                    directly is not possible – it is an unknown quantity

 Second core building block
 Practical result using tools & techniques to get
 e.g. linear models with the Perceptron Learning Algorithm (PLA)
 Using                is possible – it is a known quantity – ‘so lets get it small‘
 Lessons learned from practice: in many situations ‘close to 0‘ impossible

 Full learning means that we can make sure that Eout(g) is close enough to Ein(g) [from theory]
 Full learning means that we can make sure that Ein(g) is small enough [from practical techniques]

(try to get the ‘in-sample‘ error lower)
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Complexity of the Hypothesis Set – Infinite Spaces Problem 

 Tradeoff & Review 
 Tradeoff between Є, M, and the ‘complexity of the hypothesis space H‘
 Contribution of detailed learning theory is to ‘understand factor M‘

 M Elements of the hypothesis set
 Ok if N gets big, but problematic if M gets big  bound gets meaningless
 E.g. classification models like perceptron, support vector machines, etc.
 Challenge: those classification models have continous parameters
 Consequence: those classification models have infinite hypothesis spaces
 Aproach: despite their size, the models still have limited expressive power

 Many elements of the 
hypothesis set H have 
continous parameter 
with infinite M 
hypothesis spaces

M elements in H here

theory helps to find a way to deal 
with infinite M hypothesis spaces
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Factor M from the Union Bound & Hypothesis Overlaps

 Union bound is a ‘poor bound‘, ignores correlation between h
 Overlaps are common: the interest is shifted to data points changing label

or
or

...

 Statistical 
Learning 
Theory 
provides a 
quantity able 
to characterize 
the overlaps 
for a better 
bound

h1
h2 ΔEout 

ΔEout

ΔEin

change in areas change in data label

assumes no
overlaps, all 
probabilities 

happen
disjointly

takes no overlaps of M hypothesis into account

(at least very often,
indicator to reduce M)

‘unimportant‘ ‘important‘
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Replacing M & Large Overlaps

 The mathematical proofs that mH(N) can replace M is a key part of the theory of generalization

(Hoeffding Inequality) (Union Bound) (towards Vapnik Chervonenkis Bound)

 Characterizing the overlaps is the idea of a ‘growth function‘
 Number of dichotomies:

Number of hypothesis but
on finite number N of points

 Much redundancy: Many hypothesis will reports the same dichotomies

(valid for 1 hypothesis) (valid for M hypothesis, worst case) (valid for m (N) as growth function)
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Complexity of the Hypothesis Set – VC Inequality

 Vapnik-Chervonenkis (VC) Inequality
 Result of mathematical proof when replacing M with growth function m
 2N of growth function to have another sample ( 2 x            , no              )    

 In Short – finally : We are able to learn and can generalize ‘ouf-of-sample‘

 The Vapnik-Chervonenkis Inequality is the most important result in machine learning theory
 The mathematial proof brings us that M can be replaced by growth function (no infinity anymore)
 The growth function is dependent on the amount of data N that we have in a learning problem

(characterization of generalization)
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Complexity of the Hypothesis Set – VC Dimension & Model Complexity

 Vapnik-Chervonenkis (VC) Dimension over instance space X
 VC dimension gets a ‘generalization bound‘ on all possible target functions

 Complexity of Hypothesis set H can be measured by the Vapnik-Chervonenkis (VC) Dimension dVC

 Ignoring the model complexity dVC leads to situations where Ein(g) gets down and Eout(g) gets up

Error

VC dimension dVC

model
complexity

d*VC

(‘generalization error‘)

(‘training error‘)

Issue: unknown to ‘compute‘ – VC solved this using the growth function on different samples 

‘out of sample‘

‘first sample‘

‘second sample‘

idea: ‘first sample‘ frequency 
close to ‘second sample‘ frequency
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Different Models – Hypothesis Set & Model Capacity

Hypothesis Set

(all candidate functions
derived from models 
and their parameters)

(e.g. support vector machine model)

(e.g. linear perceptron model)

Final Hypothesis‘select one function‘
that best approximates

 Choosing from various model approaches h1, …, hm is a 
different hypothesis

 Additionally a change in model parameters of h1, …, hm
means a different hypothesis too

 The model capacity characterized by the VC Dimension 
helps in choosing models

 Occam‘s Razor rule of thumb: ‘simpler model better‘ in 
any learning problem, not too simple!

(e.g. artificial neural network model)
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[Video] Prevent Overfitting for better Generalization

[2] YouTube Video, Stop Overfitting

Lecture 2 – Artificial Neural Network Learning Model & Backpropagation 25 / 73



Artificial Neural Networks & Backpropagation
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Model Evaluation – Testing Phase & Confusion Matrix

 Model is fixed
 Model is just used with the testset
 Parameters are set

 Evaluation of model performance
 Counts of test records that are incorrectly predicted
 Counts of test records that are correctly predicted
 E.g. create confusion matrix for a two class problem

Counting per sample Predicted Class
Class = 1 Class = 0

Actual 
Class

Class = 1 f11 f10

Class = 0 f01 f00

(serves as a basis for further performance metrics usually used)
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Model Evaluation – Testing Phase & Performance Metrics

Counting per sample Predicted Class
Class = 1 Class = 0

Actual 
Class

Class = 1 f11 f10

Class = 0 f01 f00

(100% accuracy in learning often
points to problems using machine 
learning methos in practice)
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Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

Final Hypothesis

(ideal function)

(final formula)

(set of candidate formulas)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(set of known algorithms)

‘constants‘ 
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise

Training Examples

(historical records, groundtruth data, examples)

MNIST dataset

Perceptron Algorithm

Multi-Output Perceptron Learning Model

Lecture 2 – Artificial Neural Network Learning Model & Backpropagation 29 / 73



MNIST Dataset – A Multi Output Perceptron Model – Revisited (cf. Lecture 3)

(Dense
Layer)

(output
probabilities)

(Softmax
Layer)

(NB_CLASSES = 10)(softmax
activation)

(10 neurons sum 
with 10 bias)

(input m = 784)

 How to improve the model design by extending the neural network topology?
 Which layers are required?
 Think about input layer need to match the data – what data we had?
 Maybe hidden layers?
 How many hidden layers?
 What activation function for which layer (e.g. maybe ReLU)?
 Think Dense layer – Keras?
 Think about final Activation as Softmax  output probability

Lecture 2 – Artificial Neural Network Learning Model & Backpropagation

 Multi Output 
Perceptron: 
~91,01% (20 
Epochs)
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Different Models – Hypothesis Set & Choosing a Model with more Capacity

Hypothesis Set

(all candidate functions
derived from models 
and their parameters)

(e.g. support vector machine model)

(e.g. linear perceptron model)

Final Hypothesis‘select one function‘
that best approximates

 Choosing from various model approaches h1, …, hm is a 
different hypothesis

 Additionally a change in model parameters of h1, …, hm
means a different hypothesis too

 The model capacity characterized by the VC Dimension 
helps in choosing models

 Occam‘s Razor rule of thumb: ‘simpler model better‘ in 
any learning problem, not too simple!

(e.g. artificial neural network model)
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Artificial Neural Network (ANN)

 Simple perceptrons fail: ‘not linearly seperable’ ?

Decision Boundary Two-Layer, feed-forward Artificial Neural Network topology

X1

X2

y

Labelled Data Table

X1 X2 Y

0 0 -1

1 0 1

0 1 1

1 1 -1

X2

X1

w31

w41

w32

w42

w54

w53

n2

n1 n3

n4

n5

(Idea: instances can be classified using 
two lines at once to model XOR)
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 Forward interconnection of several layers of perceptrons 
 MLPs can be used as universal approximators 
 In classification problems, they allow modeling nonlinear discriminant functions
 Interconnecting neurons aims at increasing the capability of modeling complex input-output relationships

Multi-Layer Perceptron (MLP) using Non-linearities
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Activation Functions to Choose From

 Facts
 The choice of the architecture and the 

activation function plays a key role in 
the definition of the network

 Each activation function takes a 
single number and performs a 
certain fixed mathematical operation on it
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ℎ 𝑧 = 11 + 𝑒 ℎ 𝑧 = tanh 𝑧 ℎ 𝑧 = max(𝑧, 0)

ℎ 𝑧 = log (1 + 𝑒 ) ℎ 𝑧 = max z, z𝛼 0 < 𝛼 < 1 ℎ 𝑧 = 𝑧, 𝑧 > 0𝛼 𝑒 − 1 𝑧 ≤ 0
[9] Understanding Neural Networks



Backpropagation Algorithm using Optimization
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MNIST Dataset – Add Two Hidden Layers for Artificial Neural Network (ANN)

 All parameter value remain the same as before
 We add N_HIDDEN as parameter in order to set 128 neurons in one 

hidden layer – this number is a hyperparameter that is not directly 
defined and needs to be find with parameter search 

 The non-linear Activation function ‘relu‘ represents a so-called Rectified Linear Unit (ReLU) 
that only recently became very popular because it generates good experimental results in 
ANNs and more recent deep learning models – it just returns 0 for negative values and 
grows linearly for only positive values

 A hidden layer in an ANN can be represented by a fully connected Dense layer in Keras by 
just specifying the number of hidden neurons in the hidden layer

(activation functions ReLU & Tanh)

[3] big-data.tips, 
‘Relu Neural Network’

[4] big-data.tips, 
‘tanh’
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Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

Final Hypothesis

(ideal function)

(final formula)

(set of candidate formulas)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(set of known algorithms)

‘constants‘ 
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise

Training Examples

(historical records, groundtruth data, examples)

MNIST dataset

Backpropagation Algorithm

Artificial Neural Network (ANN)
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MNIST Dataset – ANN Model Parameters & Output Evaluation

 Multi Output Perceptron: 
~91,01% (20 Epochs)

 ANN 2 Hidden Layers:
~95,14 % (20 Epochs)

 Dense Layer connects every neuron in this dense layer to the next 
dense layer with each of its neuron also called a fully connected 
network element with weights as trainiable parameters

 Choosing a model with different layers is a model selection that 
directly also influences the number of parameters (e.g. add Dense 
layer from Keras means new weights)

 Adding a layer with these new weights means much more 
computational complexity since each of the weights must be 
trained in each epoch (depending on #neurons in layer)
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Machine Learning Challenges – Problem of Overfitting

 Key problem: noise in the target function leads to overfitting 
 Effect: ‘noisy target function‘ and 

its noise misguides the fit in learning
 There is always ‘some noise‘ in the data
 Consequence:  poor target function 

(‘distribution‘) approximation 

 Example: Target functions is second 
order polynomial (i.e. parabola)
 Using a higher-order polynomial fit
 Perfect fit: low                , but large

(target)

(overfit)

(noise)

(‘over‘: here meant as 4th order,
a 3rd order would be better, 2nd best)

(but simple polynomial works good enough)

 Overfitting refers to fit the data too well – more than is warranted – thus may misguide the learning
 Overfitting is not just ‘bad generalization‘ - e.g. the VC dimension covers noiseless & noise targets
 Theory of Regularization are approaches against overfitting and prevent it using different methods
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Problem of Overfitting – Clarifying Terms

 Overfitting & Errors
 goes down
 goes up

 ‘Bad generalization area‘ ends
 Good to reduce 

 ‘Overfitting area‘ starts
 Reducing                does not help
 Reason ‘fitting the noise‘

Error

Training time

(‘generalization error‘)

(‘training error‘)

 overfitting occursbad generalization

 A good model must have low training error (Ein) and low generalization error (Eout)
 Model overfitting is if a model fits the data too well (Ein) with a poorer generalization error (Eout)

than another model with a higher training error (Ein)
 The two general approaches to prevent overfitting are (1) validation and (2) regularization
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Validation & Model Selection – Terminology 

 ‘Training error‘ 
 Calculated when learning from data (i.e. dedicated training set)

 ‘Test error’
 Average error resulting from using the model with ‘new/unseen data‘
 ‘new/unseen data‘ was not used in training (i.e. dedicated test set)
 In many practical situations, a dedicated test set is not really available

 ‘Validation Set‘
 Split data into training & validation set

 ‘Variance‘ & ‘Variability‘
 Result in different random splits (right) (1 split) (n splits)

(split creates a two subsets of comparable size)

 The ‘Validation technique‘ should be used in all machine learning or data mining approaches
 Model assessment is the process of evaluating a models performance
 Model selection is the process of selecting the proper level of flexibility for a model
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Validation Technique – Formalization & Goal

 Regularization & Validation
 Approach: introduce a ‘overfit penalty‘ that relates to model complexity
 Problem: Not accurate values: ‘better smooth functions‘

 Validation 
 Goal ‘estimate the out-of-sample error‘ 
 Distinct activity from training and testing

(regularization estimates 
this quantity)

(regularization uses a term that captures the overfit penalty)
(minimize both to be better proxy for Eout)

(validation estimates 
this quantity)

(establish a quantity known as validation error)

(testing also tries to estimate the Eout)

(measuring Eout is not possible as this is an unknown quantity, 
another quantity is needed that is measurable that at least estimates it)

 Validation is a very 
important technique 
to estimate the out-of-
sample performance 
of a model

 Main utility of 
regularization &  
validation is to 
control or avoid 
overfitting via model 
selection
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Validation Technique – Pick one point & Estimate Eout

 Understanding ‘estimate‘ Eout
 On one  out-of-sample point              the error is 
 E.g. use squared error:

 Use this quantity as estimate for Eout
 Term ‘expected value‘ to formalize (probability theory)

Training Examples

‘test set’‘training set’

(poor estimate)

(Taking into account the theory of Lecture 1 with probability distribution on X etc.)
Probability Distribution

(activity below is what we do for testing,
but call it differently for another purpose)

(one point as unbiased estimate of Eout that can have a high variance leads to bad generalization)

(aka ‘random variable‘)
(aka the long-run average value of repetitions of the experiment)

K
(involved in validation)
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Validation Technique – Validation Set

 Solution for high variance in expected values
 Take a ‘whole set‘ instead of just one point             for validation

 Idea: K data points for validation

 Expected value to ‘measure‘
the out-of-sample error

 ‘Reliable estimate‘ if K is large

(validation set)

Training Examples

(validation error)

(we do the same approach with the 
testing set, but here different purpose)

(involved in training+test) (involved in validation)

(we need points not used in training
to estimate the out-of-sample performance)

(expected values averaged over set)

(this gives a much better (lower) variance than on a single point given K is large)(on rarely used validation set,
otherwise data gets contaminated)

K

Lecture 2 – Artificial Neural Network Learning Model & Backpropagation

 Validation set consists of 
data that has been not used 
in training to estimate true 
out-of-sample

 Rule of thumb from practice 
is to take 20% (1/5) for 
validation of the learning 
model 
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Validation Technique – Model Selection Process

(set of candidate formulas across models)

Hypothesis Set

(pick ‘best‘  bias)

(final real training
to get even better
out-of-sample)

(training)

(validate)

(final training on full set, use
the validation samples too)

(out-of-sample
w.r.t. DTrain)

(training not on
full data set)

(decides model selection)

Final Hypothesis (test this on unseen data
good, but depends on 
availability in practice)

(unbiased
estimates)

 Many different models
Use validation error to 
perform select decisions 
 Careful consideration:

 ‘Picked means decided‘
hypothesis has already
bias ( contamination)

 Using            M times

 Model selection is 
choosing (a) different types 
of models or (b) parameter 
values inside models

 Model selection takes 
advantage of the validation 
error in order to decide 
‘pick the best‘
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ANN 2 Hidden 1/5 Validation – MNIST Dataset

 If there is enough data available one rule of thumb is to 
take 1/5 (0.2) 20%  of the datasets for validation only 

 Validation data is used to perform model selection (i.e. 
parameter / topology decisions)

 The validation split parameter enables an easy 
validation approach during the model training 
(aka fit)

 Expectations should be a higher accuracy for 
unseen data since training data is less biased 
when using validation for model decisions (check 
statistical learning theory)

 VALIDATION_SPLIT: Float between 0 and 1
 Fraction of the training data to be used as 

validation data
 The model fit process will set apart this fraction of 

the training data and will not train on it
 Intead it will evaluate the loss and any model 

metrics on the validation data at the end of each 
epoch. 
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Problem of Overfitting – Clarifying Terms – Revisited 

 Overfitting & Errors
 goes down
 goes up

 ‘Bad generalization area‘ ends
 Good to reduce 

 ‘Overfitting area‘ starts
 Reducing                does not help
 Reason ‘fitting the noise‘

Error

Training time

(‘generalization error‘)

(‘training error‘)

 overfitting occursbad generalization

 A good model must have low training error (Ein) and low generalization error (Eout)
 Model overfitting is if a model fits the data too well (Ein) with a poorer generalization error (Eout)

than another model with a higher training error (Ein)
 The two general approaches to prevent overfitting are (1) validation and (2) regularization
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Problem of Overfitting – Model Relationships

 Review ‘overfitting situations‘
 When comparing ‘various models‘ and related to ‘model complexity‘
 Different models are used, e.g. 2nd and 4th order polynomial
 Same model is used with e.g. two different instances

(e.g. two neural networks but with different parameters)

 Intuitive solution
 Detect when it happens
 ‘Early stopping regularization

term‘ to stop the training 
 Early stopping method

Error

Training time

(‘generalization error‘)

(‘training error‘)

(‘early stopping‘)

model
complexity

(‘model complexity measure: the VC analysis was independent 
of a specific target function – bound for all target functions‘)

 ‘Early stopping‘ approach is part of the theory of 
regularization, but based on validation methods
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Problem of Overfitting – ANN Model Example possible towards 99% Accuracy?

Error

Training time

(‘generalization error‘)

(‘training error‘)

(‘early stopping‘)

model
complexity

 Two Hidden Layers
 Good accuracy and works well 
 Model complexity seem to 

match the application & data

 Four Hidden Layers
 Accuracy goes down
 goes down
 goes up
 Significantly more weights to train 
 Higher model complexity

Lecture 2 – Artificial Neural Network Learning Model & Backpropagation

 1st possible Change: 
Adding more layers means
more model complexity

 2nd possible change:
Longer training time to 
enable better learning

 Questions remains: will it 
be useful to get towards 
99% accuracy?
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MNIST Dataset & Model Summary & Parameters

 Four Hidden Layers
 Each hidden layers has 128 neurons
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Exercises  - Add more Hidden Layers – 4 Hidden Layers

 Training accuracy should still be above the 
test accuracy – otherwise overfitting starts!
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Exercises  - Add more Hidden Layers – 6 Hidden Layers

 Training accuracy should still be above the 
test accuracy – otherwise overfitting starts!
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Problem of Overfitting – Noise Term Revisited 

 ‘(Noisy) Target function‘ is not a (deterministic) function
 Getting with ‘same x in‘ the ‘same y out‘ is not always given in practice
 Idea: Use a ‘target distribution‘

instead of ‘target function‘

 ‘Different types of some noise‘ in data
 Key to understand overfitting & preventing it
 ‘Shift of view‘: refinement of noise term
 Learning from data: ‘matching properties of # data‘

(target)
(overfit)

(noise)

‘shift the view’

(‘function view‘)

(‘# data view‘)

 Fitting some noise in the data 
is the basic reason for overfitting
and harms the learning process

 Big datasets tend to have more noise 
in the data so the overfitting problem 
might occur even more intense
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Problem of Overfitting – Stochastic Noise

 Stoachastic noise is a part ‘on top of‘ each learnable function
 Noise in the data that can not be captured and thus not modelled by f
 Random noise : aka ‘non-deterministic noise‘
 Conventional understanding 

established early in this course
 Finding a ‘non-existing pattern 

in noise not feasible in learning‘

 Practice Example
 Random fluctuations and/or

measurement errors in data 
 Fitting a pattern that not exists ‘out-of-sample‘ 
 Puts learning progress ‘off-track‘ and ‘away from f‘

(target)
(overfit)

(noise)

 Stochastic noise here 
means noise that can‘t be 
captured, because it‘s just 
pure ‘noise as is‘
(nothing to look for) – aka 
no pattern in the data to 
understand or to learn from
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Problem of Overfitting – Deterministic Noise

 Part of target function f that H can not capture:
 Hypothesis set H is limited so best h* can not fully approximate f
 h* approximates f, but fails to pick certain parts of the target f
 ‘Behaves like noise‘, existing even if data is ‘stochastic noiseless‘

 Different ‘type of noise‘ than stochastic noise
 Deterministic noise depends on 
 E.g. same f, and more sophisticated       : noise is smaller

(stochastic noise remains the same, 
nothing can capture it)

 Fixed for a given      , clearly measurable
(stochastic noise may vary for values of      )

 Deterministic noise here means 
noise that can‘t be captured, 
because it is a limited model
(out of the league of this 
particular model), e.g. ‘learning 
with a toddler statistical learning 
theory‘

(determines how much more can be captured by h*)

(learning deterministic noise is outside the ability to learn for a given h*)

(f)

(h*)
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Problem of Overfitting – Impacts on Learning

 Understanding deterministic noise & target complexity
 Increasing target complexity increases deterministic noise (at some level)
 Increasing the number of data N decreases the deterministic noise

 Finite N case:       tries to fit the noise
 Fitting the noise straightforward (e.g. Perceptron Learning Algorithm)
 Stochastic (in data) and deterministic (simple model) noise will be part of it

 Two ‘solution methods‘ for avoiding overfitting
 Regularization:  ‘Putting the brakes in learning‘, e.g. early stopping

(more theoretical, hence ‘theory of regularization‘)
 Validation: ‘Checking the bottom line‘, e.g. other hints for out-of-sample

(more practical, methods on data that provides ‘hints‘)

 The higher the degree of the polynomial (cf. model complexity), the more degrees of freedom are 
existing and thus the more capacity exists to overfit the training data 
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High-level Tools – Keras – Regularization Techniques 

keras.layers.Dropout(rate, 

noise_shape=None, 
seed=None)

from keras import regularizers 

model.add(Dense(64, input_dim=64, 
kernel_regularizer=regularizers.l2(0.01),
activity_regularizer=regularizers.l1(0.01)))

 Keras is a high-level deep learning library implemented in Python that works on top of existing other 
rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano

 The key idea behind the Keras tool is to enable faster experimentation with deep networks
 Created deep learning models run seamlessly on CPU and GPU via low-level frameworks 

 Dropout is randomly setting a fraction of 
input units to 0 at each update during 
training time, which helps prevent overfitting 
(using parameter rate)

 L2 regularizers allow to apply penalties on 
layer parameter or layer activity during 
optimization itself – therefore the penalties 
are incorporated in the loss function during 
optimization
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ANN – MNIST Dataset – Add Weight Dropout Regularizer

 A Dropout() regularizer randomly drops 
with ist dropout probability some of the 
values propagated inside the Dense 
network hidden layers improving 
accuracy again

 Our standard model is already modified in 
the python script but needs to set the 
DROPOUT rate

 A Dropout() regularizer randomly drops 
with ist dropout probability some of the 
values propagated inside the Dense 
network hidden layers improving 
accuracy again
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MNIST Dataset & Model Summary & Parameters

 Only two Hidden Layers but with Dropout
 Each hidden layers has 128 neurons

Lecture 2 – Artificial Neural Network Learning Model & Backpropagation 59 / 73



ANN – MNIST – DROPOUT (20 Epochs)

 Regularization effect not yet because too little training 
time (i.e. other regularlization ‚early stopping‘ here)
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ANN – MNIST – DROPOUT (200 Epochs)

 Regularization effect visible by long training time 
using dropouts and achieving highest accuracy

 Note: Convolutional Neural Networks: 99,1 %
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MNIST Dataset & SGD Method – Changing Optimizers is another possible tuning

[7] Big Data Tips,
Gradient Descent

 Gradient Descent (GD) 
uses all the training 
samples available for a 
step within a iteration

 Stochastic Gradient 
Descent (SGD) converges 
faster: only one training 
samples used per 
iteration 
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MNIST Dataset & RMSprop & Adam Optimization Methods

 RMSProp is an advanced optimization 
technique that in many cases enable 
earlier convergence

 Adam includes a concept of momentum 
(i.e. veloctity) in addition to the 
acceleration of SGD

Lecture 2 – Artificial Neural Network Learning Model & Backpropagation 63 / 73



[Video] Overfitting in Deep Neural Networks

[7] YouTube Video, Overfitting and Regularization For Deep Learning

Lecture 2 – Artificial Neural Network Learning Model & Backpropagation 64 / 73



Lecture Bibliography

Lecture 2 – Artificial Neural Network Learning Model & Backpropagation 65 / 67



Lecture Bibliography

 [1] Leslie G. Valiant, ‘A Theory of the Learnable’, Communications of the ACM 27(11):1134–1142, 1984, Online: 
https://people.mpi-inf.mpg.de/~mehlhorn/SeminarEvolvability/ValiantLearnable.pdf

 [2] Udacity, ‘Overfitting‘, Online: 
https://www.youtube.com/watch?v=CxAxRCv9WoA

 [3] www.big-data.tips, ‘Relu Neural Network‘, Online: 
http://www.big-data.tips/relu-neural-network

 [4] www.big-data.tips, ‘tanh‘, Online: 
http://www.big-data.tips/tanh

 [5] Tensorflow, Online: 
https://www.tensorflow.org/

 [6] Keras Python Deep Learning Library, Online: 
https://keras.io/

 [6] www.big-data.tips, ‘Gradient Descent, Online: 
http://www.big-data.tips/gradient-descent

 [7] YouTube Video, ‘Overfitting and Regularization For Deep Learning | Two Minute Papers #56’, Online: 
https://www.youtube.com/watch?v=6aF9sJrzxaM

 [8] MIT 6.S191: Introduction to Deep Learning, Online:
http://introtodeeplearning.com/

 [9] Understanding the Neural Network, Online: 
http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2019/www/hwnotes/HW1p1.html

Lecture 2 – Artificial Neural Network Learning Model & Backpropagation 66 / 67



Lecture 2 – Artificial Neural Network Learning Model & Backpropagation 67 / 67


