

Artificial Intelligence Data Analysis (AIDA)

1st School for Heliophysicists

Prof. Dr. – Ing. Morris Riedel

Associated Professor

School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland Research Group Leader, Juelich Supercomputing Centre, Forschungszentrum Juelich, Germany

LECTURE 5

Supervised Learning – Artificial Neural Networks & Learning Theory

January 20, 2020 CINECA, Bologna, Italy

Review of Lecture 4 – Multi-Class Classification & Generalization

Outline of the School

Time	Day 1	Day 2	Day 3
9 - 10	Welcome and intro to the school (Giovanni Lapenta, Jorge Amaya)	Space missions data acquisition (Hugo Breuillard)	Review of ML applied to heliophysics (Peter Wintoft)
10 - 11	Introduction and differences between AI, ML, NN and Big Data (Morris Riedel)	Data manipulation in python with pandas, xarray, and additional python tools (Geert Jan Bex)	Review of ML applied to heliophysics (Peter Wintoft)
	Coffee break	Coffee break	Coffee break
11:30 - 12:30	Unsupervised learning (Morris Riedel)	Feature engineering and data reduction (Geert Jan Bex)	Reinforcement learning (Morris Riedel)
	Lunch	Lunch	Lunch
14 - 15	Unsupervised learning (Morris Riedel)	Data reduction and visualization (Geert Jan Bex)	Physics informed ML (Romain Dupuis)
15 -16	Supervised learning (Morris Riedel)	CNN, DNN (Morris Riedel)	Explainable AI (Jorge Amaya)
	Coffee break	Coffee break	Coffee break
16:30 - 18:00	Supervised learning (Morris Riedel)	CNN, DNN (Morris Riedel)	Performance and tuning of ML (Morris Riedel)

Outline

- Supervised Learning & Statistical Learning Theory
 - Formalization of Supervised Learning & Mathematic Building Blocks Continued
 - Understanding Statistical Learning Theory Basics & PAC Learning
 - Infinite Learning Model & Union Bound
 - Hoeffding Inequality & Vapnik Chervonenkis (VC) Inequality & Dimension
 - Understanding the Relationship of Number of Samples & Model Complexity
- Supervised Learning & Artificial Neural Networks
 - Conceptual Idea of a Multi-Layer Perceptron
 - Artificial Neural Networks (ANNs) & Backpropagation
 - Problem of Overfitting & Different Types of Noise
 - Validation for Model Selection as another Technique against Overfitting
 - Regularization as Technique against Overfitting

Supervised Learning & Statistical Learning Theory

Solutions – Train on Testing Dataset & Test on Training Dataset & Increase Epochs

It seems the number of N samples matter in learning – why?

Feasibility of Learning - Probability Distribution

- Predict output from future input (fitting existing data is not enough)
 - In-sample '1000 points' fit well
 - Possible: Out-of-sample >= '1001 point' doesn't fit very well
 - Learning 'any target function' is not feasible (can be anything)
- Assumptions about 'future input'
 - Statement is possible to define about the data outside the in-sample data $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)$
 - All samples (also future ones) are derived from same 'unknown probability' distribution P on X
 - Statistical Learning Theory assumes an unknown probability distribution over the input space X

Feasibility of Learning – In Sample vs. Out of Sample

- Given 'unknown' probability P on X
 - Given large sample N for $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)$
 - There is a probability of 'picking one point or another'
 - 'Error on in sample' is known quantity (using labelled data): $E_{in}(h)$
 - 'Error on out of sample' is unknown quantity: $E_{out}(h)$
 - In-sample frequency is likely close to out-of-sample frequency E_{in} tracks E_{out}

depend on which hypothesis hout of M different ones $\mathcal{H} = \{h_1, ..., h_m\};$

use E_{in}(h) as a proxy thus the other way around in learning

$$E_{out}(h) \approx E_{in}(h)$$

 Statistical Learning Theory part that enables that learning is feasible in a probabilistic sense (P on X)

Feasibility of Learning – Union Bound & Factor M

- Assuming no overlaps in hypothesis set
 - Apply very 'poor' mathematical rule 'union bound'
 - (Note the usage of g instead of h, we need to visit all)

Final Hypothesis $q \approx f$

Think if E_{in} deviates from E_{out} with more than tolerance E it is a 'bad event' in order to apply union bound

■ The union bound means that (for any countable set of m 'events') the probability that at least one of the events happens is not greater that the sum of the probabilities of the m individual 'events'

Feasibility of Learning – Modified Hoeffding's Inequality

- Errors in-sample $E_{in}(g)$ track errors out-of-sample $E_{out}(g)$
 - Statement is made being 'Probably Approximately Correct (PAC)'
 - Given M as number of hypothesis of hypothesis set \mathcal{H}
 - 'Tolerance parameter' in learning ∈
 - Mathematically established via 'modified Hoeffdings Inequality': (original Hoeffdings Inequality doesn't apply to multiple hypothesis)

'Approximately' 'Probably'

$$\Pr \left[| E_{in}(g) - E_{out}(g) | > \epsilon \right] <= 2Me^{-2\epsilon^2 N}$$

'Probability that E_{in} deviates from E_{out} by more than the tolerance € is a small quantity depending on M and N'

- Theoretical 'Big Data' Impact → more N → better learning
 - lacksquare The more samples lacksquare the more reliable will track $E_{in}(g)$ $E_{out}(g)$ well
 - (But: the 'quality of samples' also matter, not only the number of samples)
 - For supervised learning also the 'label' has a major impact in learning (later)

[1] Valiant, 'A Theory of the Learnable', 1984

Statistical Learning
 Theory part describing
 the Probably
 Approximately Correct
 (PAC) learning

Mathematical Building Blocks (4) – Our Linear Example

Is this point very likely from the same distribution or just noise?

(we help here with the assumption for the samples)

(we do not solve the M problem here)

$$\Pr [| E_{in}(g) - E_{out}(g) | > \epsilon] \le 2Me^{-2\epsilon^2 N}$$

(counter example would be for instance a random number generator, impossible to learn this!)

Statistical Learning Theory – Error Measure & Noisy Targets

- Question: How can we learn a function from (noisy) data?
- 'Error measures' to quantify our progress, the goal is: $h \approx f$
 - Often user-defined, if not often 'squared error':

$$e(h(\mathbf{x}), f(\mathbf{x})) = (h(\mathbf{x}) - f(\mathbf{x}))^2$$

Error Measure α

- E.g. 'point-wise error measure'
- '(Noisy) Target function' is not a (deterministic) function (e.g. think movie rated now and in 10 years from now)
 - Getting with 'same x in' the 'same y out' is not always given in practice
 - Problem: 'Noise' in the data that hinders us from learning
 - Idea: Use a 'target distribution' instead of 'target function'
 - E.g. credit approval (yes/no)

Statistical Learning
Theory refines the
learning problem
of learning an
unknown target
distribution

Mathematical Building Blocks (5) – Our Linear Example

■ Iterative Method using (labelled) training data $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)$

(one point at a time is picked)

 Pick one misclassified training point where:

$$sign(\mathbf{w}^T\mathbf{x}_n) \neq y_n$$

- 2. Update the weight vector:
- (a) adding a vector or(b) subtracting a vector

$$\mathbf{w} \leftarrow \mathbf{w} + y_n \mathbf{x}_n$$
(y_n is either +1 or -1)

 Terminates when there are no misclassified points

(converges only with linearly seperable data)

Training and Testing – Influence on Learning

- Mathematical notations
 - Testing follows: (hypothesis clear) $\Pr\left[\mid E_{in}(g) E_{out}(g)\mid > \epsilon \right] <= 2 \quad e^{-2\epsilon^2 N}$
 - \blacksquare Training follows: (hypothesis search) $\Pr \left[\mid E_{in}(g) E_{out}(g) \mid > \epsilon \; \right] <= \; 2Me^{-2\epsilon^2N}$
- Practice on 'training examples'

(e.g. student exam training on examples to get E_{in}, down', then test via exam)

- Create two disjoint datasets
- One used for training only (aka training set)
- Another used for testing only (aka test set)

Training Examples
$$(\mathbf{x}_{\!\scriptscriptstyle 1},y_{\!\scriptscriptstyle 1}),...,(\mathbf{x}_{\!\scriptscriptstyle N},y_{\!\scriptscriptstyle N})$$

(historical records, groundtruth data, examples)

- Training & Testing are different phases in the learning process
 - Concrete number of samples in each set often influences learning

Theory of Generalization – Initial Generalization & Limits

- Learning is feasible in a probabilistic sense
 - Reported final hypothesis using a 'generalization window' on $E_{out}(g)$
 - Expecting 'out of sample performance' tracks 'in sample performance'
 - Approach: $E_{in}(g)$ acts as a 'proxy' for $E_{out}(g)$

$$E_{out}(g) \approx E_{in}(g)$$

This is not full learning – rather 'good generalization' since the quantity E_{out}(g) is an unknown quantity

- Reasoning
 - Above condition is not the final hypothesis condition:
 - More similiar like $E_{out}(g)$ approximates 0 (out of sample error is close to 0 if approximating f)
 - ullet $E_{out}(g)$ measures how far away the value is from the 'target function'
 - ullet Problematic because $E_{out}(g)$ is an unknown quantity (cannot be used...)
 - The learning process thus requires 'two general core building blocks'

Final Hypothesis qpprox f

Theory of Generalization – Learning Process Reviewed

- 'Learning Well'
 - Two core building blocks that achieve $E_{out}(g)$ approximates 0
- First core building block
 - lacktriangledown Theoretical result using Hoeffdings Inequality $E_{out}(g) pprox E_{in}(g)$
 - Using $E_{out}(g)$ directly is not possible it is an unknown quantity
- Second core building block
 - lacktriangledown Practical result using tools & techniques to get $E_{in}(g) pprox 0$
 - e.g. linear models with the Perceptron Learning Algorithm (PLA)
 - Using $E_{in}(g)$ is possible it is a known quantity 'so lets get it small'
 - Lessons learned from practice: in many situations 'close to 0' impossible
 - Full learning means that we can make sure that E_{out}(g) is close enough to E_{in}(g) [from theory]
 - Full learning means that we can make sure that E_{in}(g) is small enough [from practical techniques]

(try to get the 'in-sample' error lower)

Complexity of the Hypothesis Set – Infinite Spaces Problem

$$\Pr [| E_{in}(g) - E_{out}(g) | > \epsilon] \le 2Me^{-2\epsilon^2 N}$$

theory helps to find a way to deal with infinite M hypothesis spaces

- Tradeoff & Review
 - Tradeoff between €, M, and the 'complexity of the hypothesis space H'
 - Contribution of detailed learning theory is to 'understand factor M'
- M Elements of the hypothesis set \mathcal{H} M elements in H here
 - Ok if N gets big, but problematic if M gets big → bound gets meaningless
 - E.g. classification models like perceptron, support vector machines, etc.
 - Challenge: those classification models have continous parameters
 - Consequence: those classification models have infinite hypothesis spaces
 - Aproach: despite their size, the models still have limited expressive power

 Many elements of the hypothesis set H have continous parameter with infinite M hypothesis spaces

Factor M from the Union Bound & Hypothesis Overlaps

$$\begin{array}{c|c} \Pr \left[\begin{array}{c|c} \mid E_{in}(g) - E_{out}(g) \mid > \epsilon \end{array} \right] &<= \Pr \left[\begin{array}{c|c} \mid E_{in}(h_1) - E_{out}(h_1) \mid > \epsilon \end{array} \right. & \text{assumes no overlaps, all probabilities} \\ \text{or} & \mid E_{in}(h_2) - E_{out}(h_2) \mid > \epsilon \end{array} \right. & \text{happen disjointly} \end{array}$$

$$\Pr\left[\; \mid E_{in}(g) - E_{out}(g) \; \mid > \epsilon \;
ight] \; <= \; 2 M e^{-2\epsilon^2 N}$$
 takes no overlaps of M hypothesis into account

- Union bound is a 'poor bound', ignores correlation between h
 - Overlaps are common: <u>the interest is shifted to data points</u> changing label

Statistical
 Learning
 Theory
 provides a
 quantity able
 to characterize
 the overlaps
 for a better
 bound

Replacing M & Large Overlaps

(Hoeffding Inequality)

(valid for 1 hypothesis)

(Union Bound)

(valid for M hypothesis, worst case)

(towards Vapnik Chervonenkis Bound)

(valid for m (N) as growth function)

- Characterizing the overlaps is the idea of a 'growth function'
 - Number of dichotomies: $\mathbf{m}_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N} |\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N)|$ Number of hypothesis but on finite number N of points
 - Much redundancy: Many hypothesis will reports the same dichotomies
 - The mathematical proofs that m_H(N) can replace M is a key part of the theory of generalization

Complexity of the Hypothesis Set – VC Inequality

$$\Pr\left[\mid E_{in}(g) - E_{out}(g) \mid > \epsilon \right] <= 2Me^{-2\epsilon^2 N}$$

$$\mathbf{m}_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N} |\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N)|$$

- Vapnik-Chervonenkis (VC) Inequality
 - Result of mathematical proof when replacing M with growth function m
 - 2N of growth function to have another sample (2 x $E_{in}(h)$ no $E_{out}(h)$)

$$\Pr \left[| E_{in}(g) - E_{out}(g) | > \epsilon \right] \le 4m_{\mathcal{H}}(2N)e^{-1/8\epsilon^2N}$$

(characterization of generalization)

- In Short finally : We are able to learn and can generalize 'ouf-of-sample'
- The Vapnik-Chervonenkis Inequality is the most important result in machine learning theory
- The mathematial proof brings us that M can be replaced by growth function (no infinity anymore)
- The growth function is dependent on the amount of data N that we have in a learning problem

Complexity of the Hypothesis Set – VC Dimension & Model Complexity

- Vapnik-Chervonenkis (VC) Dimension over instance space X
 - VC dimension gets a 'generalization bound' on all possible target functions

Issue: unknown to 'compute' – VC solved this using the growth function on different samples

idea: 'first sample' frequency close to 'second sample' frequency

- Complexity of Hypothesis set H can be measured by the Vapnik-Chervonenkis (VC) Dimension d_{VC}
- Ignoring the model complexity d_{VC} leads to situations where E_{in}(g) gets down and E_{out}(g) gets up

Different Models – Hypothesis Set & Model Capacity

$$\mathcal{H} = \{h\}; \; g \in \mathcal{H}$$

$$\mathcal{H} = \{h_1, ..., h_m\};$$

(all candidate functions derived from models and their parameters)

- Choosing from various model approaches h₁, ..., h_m is a different hypothesis
- Additionally a change in model parameters of h₁, ..., h_m means a different hypothesis too
- The model capacity characterized by the VC Dimension helps in choosing models
- Occam's Razor rule of thumb: 'simpler model better' in any learning problem, not too simple!

'select one function' that best approximates

Final Hypothesis
$$g pprox f$$

 h_m

(e.g. support vector machine model)

(e.g. linear perceptron model)

(e.g. artificial neural network model)

[Video] Prevent Overfitting for better Generalization

[2] YouTube Video, Stop Overfitting

Supervised Learning & Artificial Neural Networks

Model Evaluation – Testing Phase & Confusion Matrix

- Model is fixed
 - Model is just used with the testset
 - Parameters are set
- Evaluation of model performance
 - Counts of test records that are incorrectly predicted
 - Counts of test records that are correctly predicted
 - E.g. create confusion matrix for a two class problem

Counting per sa	ample	Predicted Class	
		Class = 1	Class = 0
Actual	Class = 1	f ₁₁	f ₁₀
Class	Class = 0	f ₀₁	f_{00}

(serves as a basis for further performance metrics usually used)

Model Evaluation – Testing Phase & Performance Metrics

Counting per sample		Predicted Cl	ass	
		Class = 1	Class = 0	
Actual	Class = 1	f ₁₁	f ₁₀	(100% accuracy in learning ofter points to problems using machin
Class	Class = 0	f_{01}	f ₀₀	learning methos in practice)

$$Accuracy = rac{number \ of \ correct \ predictions}{total \ number \ of \ predictions}$$

$$egin{aligned} Error \ rate = rac{number \ of \ wrong \ predictions}{total \ number \ of \ predictions} \end{aligned}$$

MNIST Dataset – A Multi Output Perceptron Model – Revisited (cf. Lecture 3)

- How to improve the model design by extending the neural network topology?
- Which layers are required?
- Think about input layer need to match the data what data we had?
- Maybe hidden layers?
- How many hidden layers?
- What activation function for which layer (e.g. maybe ReLU)?
- Think Dense layer Keras?
- Think about final Activation as Softmax → output probability

Different Models – Hypothesis Set & Choosing a Model with more Capacity

$$\mathcal{H} = \{h\}; \; g \in \mathcal{H}$$

$$\mathcal{H} = \{h_1, ..., h_m\};$$

(all candidate functions derived from models and their parameters)

- Choosing from various model approaches h₁, ..., h_m is a different hypothesis
- Additionally a change in model parameters of h₁, ..., h_m means a different hypothesis too
- The model capacity characterized by the VC Dimension helps in choosing models
- Occam's Razor rule of thumb: 'simpler model better' in any learning problem, not too simple!

'select one function' that best approximates Final Hypothesis gpprox f

(e.g. support vector machine model)

(e.g. linear perceptron model)

Artificial Neural Network (ANN)

Simple perceptrons fail: 'not linearly seperable'

<i>X</i> ₁	X ₂	Y
0	0	-1
1	0	1
0	1	1
1	1	-1

(Idea: instances can be classified using two lines at once to model XOR)

Labelled Data Table

Two-Layer, feed-forward Artificial Neural Network topology

MNIST Dataset – Add Two Hidden Layers for Artificial Neural Network (ANN)

- All parameter value remain the same as before
- We add N_HIDDEN as parameter in order to set 128 neurons in one hidden layer – this number is a hyperparameter that is not directly defined and needs to be find with parameter search

```
[3] big-data.tips,
'Relu Neural Network'
```

[4] big-data.tips, 'tanh'

parameter setup NB_EPOCH = 20 BATCH_SIZE = 128 NB_CLASSES = 10 # number of outputs = number of digits OPTIMIZER = SGD() # optimization technique VERBOSE = 1

```
# model Keras sequential
model = Sequential()
```

```
# modeling step
# 2 hidden layers each N_HIDDEN neurons
model.add(Dense(N_HIDDEN, input_shape=(RESHAPED,)))
model.add(Activation('relu'))
model.add(Dense(N_HIDDEN))
model.add(Activation('relu'))
model.add(Dense(NB_CLASSES))
```

N_HIDDEN = 128 # number of neurons in one hidden layer

add activation function layer to get class probabilities
model.add(Activation('softmax'))

(activation functions ReLU & Tanh)


```
model.add(Dense(N_HIDDEN))
model.add(Activation('relu'))
```

```
model.add(Dense(N_HIDDEN))
model.add(Activation('tanh'))
```

- The non-linear Activation function 'relu' represents a so-called Rectified Linear Unit (ReLU) that only recently became very popular because it generates good experimental results in ANNs and more recent deep learning models it just returns 0 for negative values and grows linearly for only positive values
- A hidden layer in an ANN can be represented by a fully connected Dense layer in Keras by just specifying the number of hidden neurons in the hidden layer

Exercises – Add Two Hidden Layers for Artificial Neural Network (ANN)

MNIST Dataset – ANN Model Parameters & Output Evaluation

```
Epoch 7/20
60000/60000 [============= ] - 1s 18us/step - loss: 0.2743 - acc: 0.9223
Epoch 8/20
60000/60000
      Epoch 9/20
60000/60000 [============== ] - 1s 18us/step - loss: 0.2477 - acc: 0.9301
Epoch 10/20
60000/60000 [============== ] - 1s 18us/step - loss: 0.2365 - acc: 0.9329
Epoch 11/20
Epoch 12/20
Epoch 13/20
60000/60000 [==============] - 1s 18us/step - loss: 0.2092 - acc: 0.9412
Epoch 14/20
Epoch 15/20
Epoch 16/20
Epoch 17/20
60000/60000 [=========================== - 1s 18us/step - loss: 0.1813 - acc: 0.9487
Epoch 18/20
60000/60000 [============== ] - 1s 18us/step - loss: 0.1754 - acc: 0.9502
Epoch 19/20
60000/60000 [============== ] - 1s 18us/step - loss: 0.1700 - acc: 0.9522
Epoch 20/20
```

Test accuracy: 0.9514

- Multi Output Perceptron: ~91,01% (20 Epochs)
- ✓ ANN 2 Hidden Layers: ~95,14 % (20 Epochs)

 $\slash\hspace{-0.4em}\#$ printout a summary of the model to understand model complexity model.summary()

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 128)	100480
activation_1 (Activation)	(None, 128)	0
dense_2 (Dense)	(None, 128)	16512
activation_2 (Activation)	(None, 128)	0
dense_3 (Dense)	(None, 10)	1290
activation_3 (Activation)	(None, 10)	0
Total params: 118,282 Trainable params: 118,282 Non-trainable params: 0		

- Dense Layer connects every neuron in this dense layer to the next dense layer with each of its neuron also called a fully connected network element with weights as trainiable parameters
- Choosing a model with different layers is a model selection that directly also influences the number of parameters (e.g. add Dense layer from Keras means new weights)
- Adding a layer with these new weights means much more computational complexity since each of the weights must be trained in each epoch (depending on #neurons in layer)

Machine Learning Challenges – Problem of Overfitting

- Key problem: noise in the target function leads to overfitting
 - Effect: 'noisy target function' and its noise misguides the fit in learning
 - There is always 'some noise' in the data
 - Consequence: poor target function ('distribution') approximation
- Example: Target functions is second order polynomial (i.e. parabola)
 - Using a higher-order polynomial fit
 - ${\color{red} \bullet}$ Perfect fit: low $E_{in}(g)$, but large $E_{out}(g)$

(but simple polynomial works good enough)
('over': here meant as 4th order,
a 3rd order would be better, 2nd best)

- Overfitting refers to fit the data too well more than is warranted thus may misguide the learning
- Overfitting is not just 'bad generalization' e.g. the VC dimension covers noiseless & noise targets
- Theory of Regularization are approaches against overfitting and prevent it using different methods

Problem of Overfitting – Clarifying Terms

- Overfitting & Errors
 - $ullet E_{in}(g)$ goes down
 - $\blacksquare E_{out}(g)$ goes up
- 'Bad generalization area' ends
 - lacksquare Good to reduce $E_{in}(g)$
- 'Overfitting area' starts
 - lacksquare Reducing $E_{in}(g)$ does not help
 - Reason 'fitting the noise'

- A good model must have low training error (E_{in}) and low generalization error (E_{out})
- Model overfitting is if a model fits the data too well (E_{in}) with a poorer generalization error (E_{out}) than another model with a higher training error (E_{in})
- The two general approaches to prevent overfitting are (1) validation and (2) regularization

Validation & Model Selection – Terminology

- 'Training error'
 - Calculated when learning from data (i.e. dedicated training set)
- 'Test error'
 - Average error resulting from using the model with 'new/unseen data'
 - 'new/unseen data' was not used in training (i.e. dedicated test set)
 - In many practical situations, a dedicated test set is not really available
- 'Validation Set'
 - Split data into training & validation set
- 'Variance' & 'Variability'
 - Result in different random splits (right)
 - The 'Validation technique' should be used in all machine learning or data mining approaches
 - Model assessment is the process of evaluating a models performance
- Model selection is the process of selecting the proper level of flexibility for a model

(split creates a two subsets of comparable size)

Validation Technique – Formalization & Goal

- Regularization & Validation
 - Approach: introduce a 'overfit penalty' that relates to model complexity
 - Problem: Not accurate values: 'better smooth functions'

(regularization uses a term that captures the overfit penalty) $E_{out}(h) = E_{in}(h) + \mathbf{overfit} \ \mathbf{penalty} \ \text{ (minimize both to be better proxy for E}_{out})$ (validation estimates this quantity) $(\mathbf{regularization} \ \mathbf{estimates} \ \mathbf{this} \ \mathbf{quantity})$

(measuring E_{out} is not possible as this is an unknown quantity, another quantity is needed that is measurable that at least estimates it)

- Validation
 - Goal 'estimate the out-of-sample error' (establish a quantity known as validation error)
 - Distinct activity from training and testing (testing also tries to estimate the E_{out})

- Validation is a very important technique to estimate the out-ofsample performance of a model
- Main utility of regularization & validation is to control or avoid overfitting via model selection

Validation Technique – Pick one point & Estimate E_{out}

- Understanding 'estimate' E_{out}
 - lacksquare On one out-of-sample point (\mathbf{x},y) the error is $e(h(\mathbf{x}),y)$
 - E.g. use squared error: $e(h(\mathbf{x}), f(\mathbf{x})) = (h(\mathbf{x}) f(\mathbf{x}))^2$

$$e(h(\mathbf{x}), y) = (h(\mathbf{x}) - y)^2$$

- Use this quantity as estimate for E_{out} (poor estimate)
- Term 'expected value' to formalize (probability theory)

(Taking into account the theory of Lecture 1 with probability distribution on X etc.)

Probability Distribution
P on X

(aka 'random variable')

$$\mathbb{E}[e(h(\mathbf{x}),y)]=E_{out}(h)$$
 (aka the long-run average value of repetitions of the experiment)

(one point as unbiased estimate of E_{out} that can have a high variance leads to bad generalization)

 $\mathbf{x} = (x_1, ..., x_d) \leftarrow$

Validation Technique – Validation Set

- Solution for high variance in expected values $\mathbb{E}[e(h(\mathbf{x}), y)] = E_{out}(h)$
 - Take a 'whole set' instead of just one point (x, y) for validation

(we need points not used in training to estimate the out-of-sample performance)

data that has been not used in training to estimate true out-of-sample

Rule of thumb from practice

Rule of thumb from practice is to take 20% (1/5) for validation of the learning model

Validation set consists of

(involved in training+test) K (involved in validation)

Idea: K data points for validation

(we do the same approach with the testing set, but here different purpose)

$$(\mathbf{x}_{\!\scriptscriptstyle 1},y_{\!\scriptscriptstyle 1}),...,(\mathbf{x}_{\!\scriptscriptstyle K},y_{\!\scriptscriptstyle K})$$
 (validation set)

$$E_{val}(h) = rac{1}{K} \sum_{k=1}^{K} e(h(\mathbf{x})_k, y_k)$$
 (validation error)

 Expected value to 'measure' the out-of-sample error

(expected values averaged over set)

• 'Reliable estimate' if K is large $\mathbb{E}[E_{val}(h)] = \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[e(h(\mathbf{x})_k, y_k)] = E_{out}$

(on rarely used validation set, otherwise data gets contaminated)

(this gives a much better (lower) variance than on a single point given K is large)

Validation Technique – Model Selection Process

 $\mathcal{H} = \{h\}; \; g \in \mathcal{H}$

(set of candidate formulas across models)

- Many different models
 Use validation error to
 perform select decisions
- Careful consideration:
 - Picked means decided' hypothesis has already bias (→ contamination)
 - Using \mathcal{D}_{Val} M times

Final Hypothesis

 $g_{m*} \approx f$

- Model selection is choosing (a) different types of models or (b) parameter values inside models
- Model selection takes advantage of the validation error in order to decide → 'pick the best'

ANN 2 Hidden 1/5 Validation – MNIST Dataset

- If there is enough data available one rule of thumb is to take 1/5 (0.2) 20% of the datasets for validation only
- Validation data is used to perform model selection (i.e. parameter / topology decisions)

```
# parameter setup
NB_EPOCH = 20
BATCH_SIZE = 128
NB_CLASSES = 10 # number of outputs = number of digits
OPTIMIZER = SGD() # optimization technique
VERBOSE = 1
N_HIDDEN = 128 # number of beurons in one hidden layer
VAL_SPLIT = 0.2 # 1/5 for validation rule of thumb
```

- The validation split parameter enables an easy validation approach during the model training (aka fit)
- Expectations should be a higher accuracy for unseen data since training data is less biased when using validation for model decisions (check statistical learning theory)
- VALIDATION SPLIT: Float between 0 and 1
- Fraction of the training data to be used as validation data
- The model fit process will set apart this fraction of the training data and will not train on it
- Intead it will evaluate the loss and any model metrics on the validation data at the end of each epoch.

```
# model training
history = model.fit(X_train, Y_train, batch_size=BATCH_SIZE, epochs=NB_EPOCH, verbose=VERBOSE, validation_split = VAL_SPLIT)
```

Train on 48000 samples, validate on 12000 samples

Exercises – Add Validation Splits & Table Groups

VAL_SPLIT	Accuracy Groups
0.0	%
0.1	%
0.2	%
0.3	%
0.4	%
0.5	%

Problem of Overfitting – Clarifying Terms – Revisited

- Overfitting & Errors
 - $ullet E_{in}(g)$ goes down
 - $\blacksquare E_{out}(g)$ goes up
- 'Bad generalization area' ends
 - lacksquare Good to reduce $E_{in}(g)$
- 'Overfitting area' starts
 - Reducing $E_{in}(g)$ does not help
 - Reason 'fitting the noise'

- A good model must have low training error (E_{in}) and low generalization error (E_{out})
- Model overfitting is if a model fits the data too well (E_{in}) with a poorer generalization error (E_{out}) than another model with a higher training error (E_{in})
- The two general approaches to prevent overfitting are (1) validation and (2) regularization

Problem of Overfitting – Model Relationships

- Review 'overfitting situations'
 - When comparing 'various models' and related to 'model complexity'
 - Different models are used, e.g. 2nd and 4th order polynomial
 - Same model is used with e.g. two different instances (e.g. two neural networks but with different parameters)
- Intuitive solution
 - Detect when it happens
 - 'Early stopping regularization term' to stop the training
 - Early stopping method

('model complexity measure: the VC analysis was independent of a specific target function – bound for all target functions')

 'Early stopping' approach is part of the theory of regularization, but based on validation methods

Problem of Overfitting – ANN Model Example possible towards 99% Accuracy?

Two Hidden Layers

- Good accuracy and works well
- Model complexity seem to match the application & data

Four Hidden Layers

- Accuracy goes down
- $E_{in}(g)$ goes down
- $\blacksquare E_{out}(g)$ goes up
- Significantly more weights to train
- Higher model complexity

- 1st possible Change: Adding more layers means more model complexity
- 2nd possible change: Longer training time to enable better learning
- Questions remains: will it be useful to get towards 99% accuracy?

Exercises – Add More Hidden Layers → Do we reach 99%?

Hidden	Accuracy Groups
3	%
4	%
5	%
6	%
7	%
8	%

MNIST Dataset & Model Summary & Parameters

Four Hidden Layers

Each hidden layers has 128 neurons

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 128)	100480
activation_1 (Activation)	(None, 128)	0
dense_2 (Dense)	(None, 128)	16512
activation_2 (Activation)	(None, 128)	0
dense_3 (Dense)	(None, 128)	16512
activation_3 (Activation)	(None, 128)	0
dense_4 (Dense)	(None, 128)	16512
activation_4 (Activation)	(None, 128)	0
dense_5 (Dense)	(None, 10)	1290
activation_5 (Activation)	(None, 10)	0 :======
Total params: 151.306		

Total params: 151,306 Trainable params: 151,306 Non-trainable params: 0

printout a summary of the model to understand model complexity
model.summary()

Exercises - Add more Hidden Layers - 4 Hidden Layers

```
Epoch 7/20
Epoch 9/20
Epoch 10/20
Epoch 11/20
Epoch 12/20
Epoch 13/20
Epoch 14/20
Epoch 16/20
Epoch 17/20
Epoch 18/20
Epoch 19/20
# model evaluation
score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print("Test score:", score[0])
print('Test accuracy:', score[1])
```

Training accuracy should still be above the

test accuracy – otherwise overfitting starts!

Test accuracy: 0.9571

Test score: 0.13893915132246912

Exercises - Add more Hidden Layers - 6 Hidden Layers

```
Epoch 7/20
48000/48000 [==================== ] - 1s 28us/step - loss: 0.2567 - acc: 0.9231 - val_loss: 0.2370 - val_acc: 0.9311
Epoch 9/20
Epoch 10/20
48000/48000 [==============] - 1s 28us/step - loss: 0.1963 - acc: 0.9415 - val_loss: 0.1860 - val_acc: 0.9461
Epoch 11/20
Epoch 12/20
Epoch 13/20
Epoch 14/20
48000/48000 [==============] - 1s 28us/step - loss: 0.1477 - acc: 0.9573 - val_loss: 0.1535 - val_acc: 0.9552
Epoch 15/20
Epoch 16/20
Epoch 17/20
48000/48000 [========================== ] - 1s 28us/step - loss: 0.1240 - acc: 0.9630 - val_loss: 0.1495 - val_acc: 0.9573
Epoch 18/20
48000/48000 [=================== ] - 1s 27us/step - loss: 0.1170 - acc: 0.9663 - val_loss: 0.1447 - val_acc: 0.9563
Epoch 19/20
Epoch 20/20
# model evaluation
score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print("Test score:", score[0])
print('Test accuracy:', score[1])
10000/10000 |=============== | - 0s 34us/step
                                Training accuracy should still be above the
Test score: 0.13102742895036937
```

test accuracy – otherwise overfitting starts!

Test accuracy: 0.9614

Problem of Overfitting – Noise Term Revisited

- '(Noisy) Target function' is not a (deterministic) function
 - Getting with 'same x in' the 'same y out' is not always given in practice
 - Idea: Use a 'target distribution' instead of 'target function'
 - Fitting some noise in the data is the basic reason for overfitting and harms the learning process
 - Big datasets tend to have more noise in the data so the overfitting problem might occur even more intense

'shift the view'

- 'Different types of some noise' in data
 - Key to understand overfitting & preventing it
 - 'Shift of view': refinement of noise term
 - Learning from data: 'matching properties of # data'

('function view')

Problem of Overfitting – Stochastic Noise

- Stoachastic noise is a part 'on top of' each learnable function
 - Noise in the data that can not be captured and thus not modelled by f
 - Random noise : aka 'non-deterministic noise'
 - Conventional understanding established early in this course
 - Finding a 'non-existing pattern in noise not feasible in learning'

 Stochastic noise here means noise that can't be captured, because it's just pure 'noise as is' (nothing to look for) – aka no pattern in the data to understand or to learn from

- Practice Example
 - Random fluctuations and/or measurement errors in data

- Fitting a pattern that not exists 'out-of-sample'
- Puts learning progress 'off-track' and 'away from f'

Problem of Overfitting – Deterministic Noise

- Part of target function f that H can not capture: $f(\mathbf{x}) h^*(\mathbf{x})$
 - Hypothesis set H is limited so best h* can not fully approximate f
 - h* approximates f, but fails to pick certain parts of the target f
 - Behaves like noise', existing even if data is 'stochastic noiseless'

Deterministic noise here means noise that can't be captured, because it is a limited model (out of the league of this particular model), e.g. 'learning with a toddler statistical learning theory'

- Different 'type of noise' than stochastic noise
 - Deterministic noise depends on \mathcal{H}

(determines how much more can be captured by h*)

- E.g. same f, and more sophisticated H: noise is smaller (stochastic noise remains the same, nothing can capture it)
- Fixed for a given X, clearly measurable (stochastic noise may vary for values of X)

(f) (h*)

(learning deterministic noise is outside the ability to learn for a given h*)

Problem of Overfitting – Impacts on Learning

- Understanding deterministic noise & target complexity
 - Increasing target complexity increases deterministic noise (at some level)
 - Increasing the number of data N decreases the deterministic noise
- Finite N case: \mathcal{H} tries to fit the noise
 - Fitting the noise straightforward (e.g. Perceptron Learning Algorithm)
 - Stochastic (in data) and deterministic (simple model) noise will be part of it
- Two 'solution methods' for avoiding overfitting
 - Regularization: 'Putting the brakes in learning', e.g. early stopping (more theoretical, hence 'theory of regularization')
 - Validation: 'Checking the bottom line', e.g. other hints for out-of-sample (more practical, methods on data that provides 'hints')
 - The higher the degree of the polynomial (cf. model complexity), the more degrees of freedom are existing and thus the more capacity exists to overfit the training data

High-level Tools – Keras – Regularization Techniques

- Keras is a high-level deep learning library implemented in Python that works on top of existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano
- The key idea behind the Keras tool is to enable faster experimentation with deep networks
- Created deep learning models run seamlessly on CPU and GPU via low-level frameworks

 Dropout is randomly setting a fraction of input units to 0 at each update during training time, which helps prevent overfitting (using parameter rate)

from keras import regularizers
model.add(Dense(64, input_dim=64,
kernel_regularizer=regularizers.12(0.01),
activity regularizer=regularizers.11(0.01)))

 L2 regularizers allow to apply penalties on layer parameter or layer activity during optimization itself – therefore the penalties are incorporated in the loss function during optimization

ANN – MNIST Dataset – Add Weight Dropout Regularizer

```
# parameter setup
 NB EPOCH = 20
 BATCH SIZE = 128
NB CLASSES = 10 # number of outputs = number of digits
OPTIMIZER = SGD() # optimization technique
VERBOSE = 1
N_HIDDEN = 128 # number of neurons in one hidden layer
VAL_SPLIT = 0.2 # 1/5 for validation rule of thumb
DROPOUT = 0.3 # regularization
# modeling step
# 2 hidden layers each N_HIDDEN neurons
model.add(Dense(N_HIDDEN, input_shape=(RESHAPED,)))
model.add(Activation('relu'))
model.add(Dropout(DROPOUT))
model.add(Dense(N_HIDDEN))
model.add(Activation('relu'))
model.add(Dropout(DROPOUT))
model.add(Dense(NB_CLASSES))
```


- A Dropout() regularizer randomly drops with ist dropout probability some of the values propagated inside the Dense network hidden layers improving accuracy again
- Our standard model is already modified in the python script but needs to set the DROPOUT rate
- A Dropout() regularizer randomly drops with ist dropout probability some of the values propagated inside the Dense network hidden layers improving accuracy again

Exercises – Underfitting & Add Dropout Regularizer

- Run with 10 Epochs first (not trained enough);
 - Training accuracy should be above the test accuracy otherwise 'underfitting'

VAL_SPLIT	Dropout	Accuracy Groups
0.1	0.10	%
0.2	0.20	%
0.3	0.25	%
0.4	0.30	%
0.5	0.40	%

MNIST Dataset & Model Summary & Parameters

- Only two Hidden Layers but with Dropout
 - Each hidden layers has 128 neurons

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 128)	100480
activation_1 (Activation)	(None, 128)	0
dropout_1 (Dropout)	(None, 128)	0
dense_2 (Dense)	(None, 128)	16512
activation_2 (Activation)	(None, 128)	0
dropout_2 (Dropout)	(None, 128)	0
dense_3 (Dense)	(None, 10)	1290
activation_3 (Activation)	(None, 10)	0
Total params: 118,282		

Total params: 118,282 Trainable params: 118,282 Non-trainable params: 0

printout a summary of the model to understand model complexity
model.summary()

ANN - MNIST - DROPOUT (20 Epochs)

```
Epoch 7/20
48000/48000 [==============] - 1s 22us/step - loss: 0.4616 - acc: 0.8628 - val_loss: 0.3048 - val_acc: 0.9127
Epoch 8/20
Epoch 9/20
48000/48000
   [==========] - 1s 22us/step - loss: 0.4181 - acc: 0.8762 - val loss: 0.2776 - val acc: 0.9198
Epoch 10/20
Epoch 11/20
Epoch 12/20
Epoch 13/20
Epoch 14/20
Epoch 15/20
Epoch 16/20
Epoch 17/20
Epoch 18/20
Epoch 19/20
Epoch 20/20
# model evaluation
score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print("Test score:", score[0])
print('Test accuracy:', score[1])
10000/10000 [=========== ] - 0s 29us/step
```

 Regularization effect not yet because too little training time (i.e. other regularlization ,early stopping here)

Test accuracy: 0.9404

Test score: 0.19944561417847873

Exercises – Underfitting & Add Dropout Regularizer

- Run with 200 Epochs
 - Training accuracy should be above the test accuracy otherwise 'underfitting'

VAL_SPLIT	Dropout	Accuracy Groups
0.1	0.10	%
0.2	0.20	%
0.3	0.25	%
0.4	0.30	%
0.5	0.40	%

ANN - MNIST - DROPOUT (200 Epochs)

```
Epoch 187/200
Epoch 188/200
Epoch 189/200
Epoch 190/200
Epoch 191/200
Epoch 192/200
Epoch 193/200
Epoch 194/200
Epoch 195/200
Epoch 196/200
Epoch 198/200
Epoch 199/200
Epoch 200/200
```

model evaluation
score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print("Test score:", score[0])
print('Test accuracy:', score[1])

10000/10000 [=============] - 0s 27us/step Test score: 0.07506137332450598

Test accuracy: 0.9775

- Regularization effect visible by long training time using dropouts and achieving highest accuracy
- Note: Convolutional Neural Networks: 99,1 %

MNIST Dataset & SGD Method – Changing Optimizers is another possible tuning

- Gradient Descent (GD)
 uses all the training
 samples available for a
 step within a iteration
- Stochastic Gradient
 Descent (SGD) converges
 faster: only one training
 samples used per
 iteration

$$\mathbf{b} = \mathbf{a} - \gamma \ \nabla \ \mathbf{f(a)} \quad \mathbf{b} = \mathbf{a} - \gamma \ \frac{\partial}{\partial \mathbf{a}} \ \mathbf{f(a)} \quad \mathbf{b} = \mathbf{a} - \gamma \ \frac{d}{d\mathbf{a}} \ \mathbf{f(a)}$$

[7] Big Data Tips, Gradient Descent

Exercises – Exploring different Optimizers and Training Speed

- Run with 200 Epochs and/or 20 Epochs and check if RMSProp or Adam might be faster?
 - Training accuracy should be above the test accuracy otherwise 'underfitting'
 - Just because being faster does not mean we want to have a loss in our accuracy (main application goal)!

VAL_SPLIT	Dropout	Optimizer	Accuracy Groups
			%
			%
			%
			%
			%

MNIST Dataset & RMSprop & Adam Optimization Methods

- RMSProp is an advanced optimization technique that in many cases enable earlier convergence
- Adam includes a concept of momentum (i.e. veloctity) in addition to the acceleration of SGD

```
Epoch 8/20
Epoch 9/20
Epoch 10/20
48000/48000 [============= - - 1s 25us/step - loss: 0.0949 - acc: 0.9716 - val loss: 0.0958 - val acc: 0.9754
Epoch 11/20
Epoch 12/20
Epoch 14/20
Epoch 16/20
Epoch 17/20
Epoch 18/20
48000/48000 [============= - - 1s 26us/step - loss: 0.0755 - acc: 0.9781 - val loss: 0.0996 - val acc: 0.9773
Epoch 20/20
# model evaluation
score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print("Test score:", score[0])
print('Test accuracy:', score[1])
10000/10000 [========== ] - 0s 33us/step
Test score: 0.09596708530617616
Test accuracy: 0.9779
```



```
from keras.optimizers import RMSprop
```

OPTIMIZER = RMSprop() # optimization technique

[Video] Overfitting in Deep Neural Networks

Source: Andrej Karpathy 20 hidden neurons No overfitti the student is, the more patterns he can memorize. Any overfitting **2:47 / 4:33** cc **♦** □ □

[7] YouTube Video, Overfitting and Regularization For Deep Learning

Lecture Bibliography

Lecture Bibliography

- [1] Leslie G. Valiant, 'A Theory of the Learnable', Communications of the ACM 27(11):1134–1142, 1984, Online: https://people.mpi-inf.mpg.de/~mehlhorn/SeminarEvolvability/ValiantLearnable.pdf
- [2] Udacity, 'Overfitting', Online:
 - https://www.youtube.com/watch?v=CxAxRCv9WoA
- [3] www.big-data.tips, 'Relu Neural Network', Online:
 - http://www.big-data.tips/relu-neural-network
- [4] www.big-data.tips, 'tanh', Online: http://www.big-data.tips/tanh
- [5] Tensorflow, Online: https://www.tensorflow.org/
- [6] Keras Python Deep Learning Library, Online: https://keras.io/
- [6] www.big-data.tips, 'Gradient Descent, Online: http://www.big-data.tips/gradient-descent
- [7] YouTube Video, 'Overfitting and Regularization For Deep Learning | Two Minute Papers #56', Online: https://www.youtube.com/watch?v=6aF9sJrzxaM

Acknowledgements

Acknowledgements – High Productivity Data Processing Research Group

PD Dr. G. Cavallaro

Senior PhD Student A.S. Memon

Senior PhD Student M.S. Memon

PhD Student E. Erlingsson

PhD Student S. Bakarat

PhD Student R. Sedona

Dr. M. Goetz (now KIT)

MSc M. Richerzhagen (now other division)

MSc P. Glock (now INM-1)

MSc C. Bodenstein (now Soccerwatch.tv)

MSc Student G.S. Guðmundsson (Landsverkjun)

This research group has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 763558 (DEEP-EST EU Project)

