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(IRIS dataset initially used for classification, cf. Lecture 1)

[9] Scitkit-Learn

[10] M.Goetz, M. Riedel et al., ‘HPDBSCAN - Highly Parallel
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Review of Lecture 3 — Unsupervised Learning
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DBSCAN’, MLHPC Workshop at Supercomputing 2015
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Estimated number of clusters: 3

Petal length

Out Est?mated number of cll;lster‘si 3
Estimated number of noise points: 18
Homogeneity: ©.953
Completeness: ©.883
V-measure: 0.917
Adjusted Rand Index: ©.952
Adjusted Mutual Information: ©.916
Silhouette Coefficient: 0.626
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(parallelization of machine learning algorithms not trivial)
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(using DBSCAN for
outlier detection,
e.g. to clean a dataset
for data classification)

| (clustering example of tweets from Twitter)
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Outline of the School

Time Day1 Day 2 Day 3
9-10 Welcome and intro to the school Space missions data acquisition Review of ML applied to
(Giovanni Lapenta, Jorge Amaya) (Hugo Breuillard) heliophysics
(Peter Wintoft)
10-11 Introduction and differences Data manipulation in python with Review of ML applied to
between Al, ML, NN and Big Data pandas, xarray, and additional heliophysics
(Morris Riedel) python tools (Peter Wintoft)
(Geert Jan Bex)
Coffee break Coffee break Coffee break
11:30 - Unsupervised learning Feature engineering and data Reinforcement learning
12:30 (Morris Riedel) reduction (Morris Riedel)
(Geert Jan Bex)
Lunch Lunch Lunch
14 -15 Unsupervised learning Data reduction and visualization Physics informed ML
(Morris Riedel) (Geert Jan Bex) (Romain Dupuis)
15-16 Supervised learning CNN, DNN Explainable Al
(Morris Riedel) (Morris Riedel) (Jorge Amaya)
Coffee break Coffee break Coffee break
16:30 - Supervised learning CNN, DNN Performance and tuning of ML
18:00 (Morris Riedel) (Morris Riedel) (Morris Riedel)




Outline

= Supervised Learning & Multi-Class Classification Problems

= Supervised Learning Revisited & Role of Deep Learning Frameworks
Formalization of Machine Learning Fundamentals & Perceptron Model
MNIST & Multi-Class Classification Problems
Relevance of Data Exploration, Data Preparation & Normalization
Multi-Output Perceptron Learning Model

= Supervised Learning & Theory of Generalization

» Formalization of Supervised Learning & Mathematical Building Blocks
Feasibility of Learning & Understanding the Theory of Generalization
Role Learning Algorithms, and Final Hypothesis
Different Models in Hypothesis Set & Unlimited ‘Degrees of Freedom’
Using Training Dataset as Training Dataset and as Testing Dataset
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Supervised Learning and Multi-Class Classification Problems

O
O
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Learning Approaches — What means Learning from data — Revisited

= The basic meaning of learning is ‘to use a set of observations to uncover an underlying process* [1] Image sources: Species Iris Group of
" The three different learning approaches are supervised, unsupervised, and reinforcement learning North America Database, www.signa.org

= Supervised Learning

= Majority of methods follow this
approach in this course

= Example: credit card approval based
on previous customer applications

(what type of flower is this?)

= Unsupervised Learning I

= Often applied before other learning = higher level data representation

= Example: Coin recognition in vending {ZJtA-C- Cheng ejva’v "7“0NA5-'
. . . nstance-aware Neura
machine based on weight and size

Architecture Search’, 2018
= Reinforcement Learning | /uﬁ
= Typical ‘human way’ of learning ’fW i

= Example: Toddler tries to touch a hot cup of tea (again and again) Bl oI

ures

> Day 1 offers details about unsupervised & supervised learning with examples & Day 3 offers an introduction to reinforcement learning
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Learning Approaches — Supervised Learning — Revisited

= Each observation of the predictor measurement(s)
has an associated response measurement:
=" lnput X =T,,..., T,
= Qutput ¥t =1,..,n

= Data  (Xy, ¥y )5 ey (Xns Uy )
= (the output guides the learning process as a ‘supervisor)

" Goal: Fit a model that relates the response to the predictors
= Prediction: Aims of accurately predicting the response for future observations

= |nference: Aims to better understanding the relationship between the
response and the predictors

Supervised learning approaches fits a model that related the response to the predictors
Supervised learning approaches are used in classification algorithms such as SVMs
Supervised learning works with data = [input, correct output]
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Deep Learning Frameworks using GPUs also good for Artificial Neural Networks

= TensorFlow

= One of the most popular deep learning frameworks available today

= Execution on multi-core CPUs or many-core GPUs

" Tensorflow is an open source library for deep learning models using a flow graph approach

" Tensorflow nodes model mathematical operations and graph edges between the nodes are
so-called tensors (also known as multi-dimensional arrays)

=  The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPUs)
" Tensorflow work with the high-level deep learning tool Keras in order to create models fast
= New versions of Tensorflow have Keras shipped with it as well & many further tools

client

run

master

worker A

m Keras

= Often used in combination with low-level frameworks like Tensorflow

worker B

[3] Tensorflow
Web page

Keras

[4] Keras
Web page

Tensorflow, CNTK, or Theano

= The key idea behind the Keras tool is to enable faster experimentation with deep networks

" Created deep learning models with Keras run seamlessly on CPU and GPU via low-level deep learning frameworks

L] Keras is a high-level deep learning library implemented in Python that works on top of existing other rather low-level deep learning frameworks like

Day 2 offers more details on how these frameworks and tools are used with GPUs and for selected Deep Learning Techniques




Exercises — Preparing & Installing the Keras Framework
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DEEP Cluster: Preparing & Installing the Keras Framework

[riedell@deepv ~]$ module load Python/3.6.8

[riedell@deepv DeepLearningl$ pip install --user keras|

[riedell@deepv ~]$ pip install --user keras
Requirement already satisfied: keras in ./.local/lib/python3.6/site-packages (2.2.4)
ollecting numpy>_1 9.1 (from keras)

Downloadlng

ollectlng h5py (from keras)
Downloading htt fi
11nux1_x86_64 whl lZ 9MB)

| 2.9MB 918kB/s
.9.0 in /direct/usr_local/software/skylake/Stages/2019a/software/Python/3.6.8-GCCcore-8.3.0/1ib/python

ollecting keras-applications>=1.0.6 (from keras)
Downloading https i ki

100% |
ollecting scipy>:
Downloading "
p36m-manylinuxl ><86_64.wh1 (25.2MB)
| 25.2MB 463kB/s
0.5 (from keras)

equlrement already satisfied: pyyaml in /direct/usr_local/software/skylake/Stages/2019a/software/Python/3.6.8-GCCcore-8.3.0/1ib/python3.6/
ite-packages (from keras) (5.1)
nstalling collected packages: numpy, h5py, keras—applications, scipy, keras-preprocessing
The scripts f2py, f2py3 and f2py3.6 are installed in '/p/home/jusers/riedell/deep/.local/bin' which is not on PATH.
Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.
Successfully installed h5py-2.10.0 keras-applications-1.0.8 keras-preprocessing-1.1.0 numpy-1.17.3 scij .3.1

Keras

[4] Keras
Web page



Perceptron Model — Mathematical Notation for one Neuron

non-linear linear combination
activation function of input data

1 1

m
J=gq 1*w0+2xi*wi » Y=g w0+XTW

T T 1=1

Output Bias T Constants
Sum
I w1

" Simplify the perceptron learning model
formula with techniques from linear T Wm
algebra for mathematical convenience m

Input Trainable
Data Weights
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Handwritten Character Recognition MNIST Dataset

= Metadata
= Not very challenging dataset, but good for benchmarks & tutorials

= When working with the dataset

= Dataset is not in any standard image format like jpg,
bmp, or gif (i.e. file format not known to a graphics viewer)

= Data samples are stored in a simple file format that is designed
for storing vectors and multidimensional matrices (i.e. numpy arrays)

= The pixels of the handwritten digit images are organized row-wise

Handwritten Character Recognition
MNIST dataset is a subset of a larger
dataset from US National Institute of
Standards (NIST)

MNIST handwritten digits includes
corresponding labels with values 0-9 and
is therefore a labeled dataset

MNIST digits have been size-normalized
to 28 * 28 pixels & are centered in a fixed-
size image for direct processing

Two separate files for training & test:
60000 training samples (~47 MB) &

10000 test samples (~7.8 MB)

with pixel values ranging from 0 (white background) t0cass O HERANEZTNHE

to 255 (black foreground) classification o 3 [@ [1] 7] [ [#] (6] 7] M|

= |mages contain grey levels as a result of an anti-aliasing technique problem) % g % % % % % % % %
used by the normalization algorithm that generated this dataset g 719 7 9 ® 5633

lo RvIREARCARF iRl MTANC VAR =

ZT:;rEe:::??j/a:szzs import mnist (downloa(.:ls data into ~home/.keras/dat_asets as % % % % % % %

K # download and shuffled as training and testing set StogZifélfafz;r;zgfg S;:qu;,;zaso?;c;\;f;ison) E‘ EI @ E |§| E' @
(X_train, y_train), (X_test, y_test) = mnist.load_data() EI E' @ |E| E E‘ E E |Z|
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MNIST Dataset — Data Access in Python & HPC Download Challenges

= WWarning for very secure HPC environments
= Note that HPC batch nodes often do not allow for download of remote files

Compute
Node

= A useful workaround for download remotely
stored datasets and files is to start the Keras
script on the login node and after data
download stop the script for a proper execution
on batch nodes for training & inference

SESRSNNEN
E=rFE

(=]

NoN WS ENS
SIS SNISGNEY
EINESNSES)
SSISESSIEENEY
SIPINOE e HH
SNRNARYSWNS
SIONICE A N =
NRNSNWSNSE
M=

Compute
Node

# download and shuffled as training and testing set
(X_train, y_train), (X_test, y_test) = mnist.load_data()

Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz
11493376/11490434 [===== = = = ==] - 6s lus/step

[riedell@juronl-adm datasets]$ pwd
p/home/jusers/riedell/juron/.keras/datasets
[riedell@juronl-adm datasets]$ 1s -al
otal 11234

drwxr-xr-x 2 riedell jusers
drwxr-xr-x 3 riedell jusers
-rw-r--r-- 1 riedell jusers 11490434 Jan 20 22:05 mnist.npz

import numpy as np
from keras.datasets {import mnist (downloads data into “home/.keras/datasets as
K NPZ file format of numpy that provides

# download and shuffled as training and testing set storage of array data using gzip compression)

(X_train, y_train), (X_test, y_test) = mnist.load_data()

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization

Compute
Node

Compute
Node

4096 Jan 20 22:05
4096 Jan 20 22:03
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Exercises — Download MNIST Data
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DEEP Cluster: Download MNIST Data

= Execute on Login-Node the Data Exploration Script to Download MNIST Data
= [oad the following module environment:

[riedell@deepv 2019-HPC-Course-MLDL-Parts]$ module load Python/3.6.8
[riedell@deepv 2019-HPC-Course-MLDL-Parts]$ module load scikit/2019a-Python-3.6.8

[riedell@deepv 2019-HPC-Course-MLDL-Parts]$ module load TensorFlow/1.13.1-GPU-Pyth

MNIST-training.py

= Python explore-MNIST-training.py




MNIST Dataset — Training/Testing Datasets & One Character Encoding

" Different phases in machine learning
. Training phases is a hypothesis search TR e

= Testing phase checks if we are on the right track
once the hypothesis is clear

H H H - e e 0 © © 0 © 0 © e o 6 © 0 46 130 L

= Validation phane for model selection (set fixed R N T T+

t d t d It © © © ©0 © O 18 171219253253 25325319580 9 ©

parameters and set model types e f Dl e R e S

n O © 0 o o © © o 6 78 25225212559 0 18 208
ne 1or training on I.e. tralining se

] O frt t o 6 o o o 1305 3126 o 0 o o o
INg on l.e. test se

ne 1or testing .e.

Exact seperation is rule of thumb per use case
(e.g. 10 % training, 90% test)

Practice: If you get a dataset take immediately test data away
‘throw it into the corner and forget about it during modelling’)

Once we learned from training data it has an ‘optimistic bias’
Usually start by exploring the dataset and its format & labels
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MNIST Dataset — Data Exploration Script Training Data & JupyterLab Example

= = JupyterLab X - o X
'import numpy as np - Lo_ad_lng MNIST ! (:Q ®a h(tyQ’Jupy'cyJ;:fzjuclich.dc/uscr, w0 e @ ¥ LinDO MBSO =
from keras.datasets import mnist tralnlrlg datasets S Fle G Vew R Keme b Tbs Seungs Hep
(X) with labels (Y) o [ oonmisr o |
\ stored in a binary jprxRErRC e i ©
# download and shuffled as training and testing set \\ numpy format ; o T
(X_train, y_train), (X_test, y_test) = mnist.load_data() 1. Format is 28 x 28 .
pixel values with
# function to explore one hand-written character grey level from 0 .
def character_show(character): (white background) | ¢ (01 <13 rormat (o
for y 1in character: to 255 (black é
row = "" foreground) . -
for x 1in y: ||| i
row += '{0: <4}'.format(x) “ o 6 5 6 5 65 o0 606 60 606 6 60 60 60 6o 00 oo
print(row) i[* Small helper R
! function that prints Ll LG L Ll mmnmmmrmmaa
|| row-wise one PLiLEL R RRRERERERISTIE ST
# view first 10 hand-written characters 1 ‘hand-written® 9 9 @ 0 ¢ o ¢t o i Mmoo o 0 0 9 0 6 0 0 O o o 0
for i in range (0,9): \ character with the SEEEEEEEEEEE S T RN R
character_show(X_train[i]) grey levels stored S 8 6 6 o 0 0 0 0 0 0 o 0 o n e smaie o o o o o o o
print("\n") in training dataset
print("Label:") Should reveal the ol
print(y_train[i]) nature of the ;fj" i [5] Jupyter
print("\n" number (aka label) jupyter Web
T , Page
— e’
" Example: loop of the training dataset (e.g. first 10 characters as shown here) PR—
= At each loop interval the ‘hand-written‘ character (X) is printed in ‘matrix notation‘ & label (Y)

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization
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MNIST Dataset with Perceptron Learning Model — Need for Reshape

= Two dimensional dataset (28 x 28)

[clcoNoNo N oo No Mol ol ol olio Mo Mo llolf ol oMol ol ol ol ol M ol ol ol o)
[cl>NoNoNoN oo NoNoN ol oo o Moo lolo lo Mo Mol ol o Mo Mo Mo o o}

Label:

= Does not fit well with input to Perceptron Model

= Need to prepare the data even more
= Reshape data = we need one long vector
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. Note that the reshape from two dimensional MNIST data to one
long vector means that we loose the surrounding context

" Loosing the surrounding context is one factor why later in this
lecture deep learning networks achieving essentially better
performance by, e.g., keeping the surrounding context

E
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MNIST Dataset — Reshape & Normalization — Example

784 dinput pixel values per train samples

(one |Ong input VeCtor 784 dinput pixel values per test samples

. [o. 0. 0. 0. 0. 0.
with length 784) , - o , - o
0. 0. 0. 0. 0. 0. . . L. .
0. 0. 0. 0. 0. 0. (two dimensional original input)
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. © o 6 ©6 6 © 6 © 6 6 06 6 ©6 06 ©6 06 6 06 6 ©6 6 ©6 06 0 0 0 0 0
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0. 0. 0. 0. 0. 0. © 06 © © © © 06 © 6 o 06 6 ©6 6 e 06 o 06 6 06 6 © 06 o 0 0 0 0
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0.49411765 0.53333336 0.6862745 0.10196079 0.6509804 1. 6 0 © 0 136253 253253212 13513216 6 © © © © o o o6 o © o © o o o o
0.96862745 0.49803922 0. 0. 0. 0. e © © © © © o © © © © © 6 o o o e e o o e 6 o o o e e o
0. 0. 0. 0. 0. 0. © © © © 06 © © o e 6 o e 6 o e 6 e 6 6 e 0 o e 6 o 0 0 o
0. 0. 0.11764706 0.14117648 0.36862746 0.6039216 [¢] [¢] <] [¢] [¢] 0 [¢] [} [} [¢] [o] o] [¢] 0] [c] [¢] [0] [¢] [¢] [o] [¢] [¢] o] [} [} [0] o] [¢]
0.6666667 0.99215686 0.99215686 0.99215686 0.99215686 0.99215686
(numbers are 0.88235205 0.6745098 0.99215686 0.9490196 0.7647059 0.2509804 Labels
0. 0. 0. 0. 0. 0. s
between 0 and 1) 0. 0. 0. 0. 0. 0.19215687
©.93333334 0.99215686 0.99215686 0.99215686 0.99215686 0.99215686
0.99215686 0.99215686 0.99215686 0.9843137 0.3647059 0.32156864
0.32156864 0.21960784 0.15294118 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0.07058824 0.85882354 0.99215686
0.99215686 0.99215686 0.99215686 0.99215686 0.7764706 0.7137255
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Exercises — Perform Reshape & Normalization on Different Training / Testing Data
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MNIST Dataset & Multi Output Perceptron Model

= 10 Class Classification Problem
= Use 10 Perceptrons for 10 outputs with softmax activation function (enables probabilities for 10 classes)

(Dense (Softmax (output
Layer) probabilities) from keras.models import Sequential
from keras.layers.core import Dense, Activation
\ s’
\ ,/, # model Keras sequential
\\ P4 model = Sequential ()
\
- - # add fully connected layer - input with output
,’ model .add (Dense (NB_CLASSES, input_shape: (RESHAPED, )))
~
~
// \\ # add activation function layer to get class probabilities
N, model.add (Activation ('softmax'))
# printout a summary of the model to understand model complexity
model . summary ()
(input m = 784) (10 neurons sum (softmax (NB_CLASSES = 10)
with 10 bias) activation) (parameters = 784 * 10 + 10 bias
. Note that the output units are independent among each other in contrast to neural networks with one hidden layer = 7850)
=  The output of softmax gives class probabilities T o F r—
" The non-linear Activation function ‘softmax‘ represents a generalization of the sigmoid function - it squashes an dense_1 (bense) one, 10) 7850
n-dimensional vector of arbitrary real values into a n-dimenensional vector of real values in the range of 0 and 1 — activation_I (Activation)  (None, 10) o
here it aggregates 10 answers provided by the Dense layer with 10 neurons
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MNIST Dataset & Compile Multi Output Perceptron Model

. Comp||e the model m from keras.optimizers import SGD

.. . OPTIMIZER = SGD() # optimization technique
= Optimizer as algorithm used to update : (’

weights while training the model

£(x) f(x)

(minimization: substract gradient term
because we move towards local minima)

(finding this point x is the

goal of gradient descent) position a (current position)

= Specify loss function (i.e. objective

(the derivative of f
function) that is used by the optimizer \ e gy b=a+tyV f(a) l(oxfﬁ"t‘:“w“:’s
to navigate the space of weights ’ A Lo
i before the step) is steepest ascent)

= (note: process of optimization is also

(new position  (weighting factor known as step-size,

after the step) can change at every iteration,

Xl zero gradient x2 Xa X also called learning rate) X X X

called loss minimization, cf. Invited

lecture Gabriele Cavalla FO) =  Compile the model to be executed by the Keras backend (e.g. TensorFlow)

=  Optimizer Gradient Descent (GD) uses all the training samples available for a

* Indicate metric for model evaluation step within a iteration

(e-g-; accCura CV) =  Optimizer Stochastic Gradient Descent (SGD) converges faster: only one
. . training samples used per iteration
u SpEley loss function = Loss function is a multi-class logarithmic loss: target is ti,j and prediction is pi,j
. .. . " Categorical crossentropy is suitable for multiclass label predictions (default
= Compare prediction vs. given class label with softmax)

= E.g. categorical crossentropy

Li = =Y.t: . log(p; . [6] Big Data Tips,
# specify loss, optimizer and metric ; 3 0 O(pl,'}) Gradient Descent

model.compile(loss='categorical_crossentropy', optimizer=0OPTIMIZER, metrics=['accuracy'])
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Full Script: MNIST Dataset — Model Parameters & Data Normalization

import numpy as np

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers.core import Dense, Activation
from keras.optimizers import SGD

from keras.utils import np utils

# parameter setup -
- e

NB_EPOCH = 20 PR

BATCH SIZE = 128 '/’

NB CLASSES = 10 # number of outputs = number of digits

OPTIMIZER = SGD() # optimization technique

WVERBOSER=

NB_CLASSES: 10 Class Problem

NB_EPOCH: number of times the model is exposed to the overall training set — at
each iteration the optimizer adjusts the weights so that the objective function is
minimized

BATCH_SIZE: number of training instances taken into account before the optimizer
performs a weight update to the model

OPTIMIZER: Stochastic Gradient Descent (‘SGD‘) — only one training sample/iteration

# download and shuffled as training and testing set

(X train, y train), (X test, y test) = mnist.load data()

# X train is 60000 rows of 28x28 values --> reshaped in 60000 x 784
RESHAPED = 784

X train = X train.reshape (60000, RESHAPED)

X test = X test.reshape (10000, RESHAPED)

X train = X train.astype('float32")

X test = X test.astype('float32'")

# normalize
X train /= 255
X_test /= 255

Data load shuffled between training and testing set in files

Data preparation, e.g. X_train is 60000 samples / rows of 28 x 28 pixel values that are
reshaped in 60000 x 784 including type specification (i.e. float32)

Data normalization: divide by 255 — the max intensity value

# output number of samples
print (X train.shape[0], 'train samples')

print (X test.shape[0], 'test samples')

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization

to obtain values in range [0,1]
‘test set’

‘training set’

Trainin% Examples
(X] ’ yl)ﬂ '='7 (XN7 yN)

|
(historical records, groundtruth data, examples)
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Full Script: MNIST Dataset — Fitting a Multi Output Perceptron Model

(full script continued from previous slide)

# convert class label vectors using one hot encoding ‘,"
Y_train = np_utils.to_categorical(y_train, NB_CLASSES) ‘,"
Y_test = np_utils.to_categorical(y_test, NB_CLASSES) ,»"

# model Keras sequential ‘,"
model = Sequential() ‘,"

# add fully connected layer - input with output
model.add(Dense (NB_CLASSES, input_shape=(RESHAPED,)))

# add activation function layer to get class probabilities -
model.add (Activation('softmax'))

# printout a summary of the model to understand model complexity
model.summary ()

# specify loss, optimizer and metric -
model.compile(loss="'categorical_crossentropy', optimizer=OPTIMIZER, metrics=['accuracy'])

# model training
history = model.fit(X_train, Y_train, batch_size=BATCH_SIZE, epochs=NB_EPOCH, verbose=VERBOSE) ™,

# model evaluation

score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print("Test score:", score[0])

print('Test accuracy:', score[l])
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The Sequential() Keras model is a linear pipeline (aka ‘a stack‘) of
various neural network layers including Activation functions of
different types (e.g. softmax)

Dense() represents a fully connected layer used in ANNs that means

that each neuron in a layer is connected to all neurons located in the
previous layer

The non-linear activation function ‘softmax‘ is a generalization of the
sigmoid function — it squashes an n-dimensional vector of arbitrary
real values into a n-dimenensional vector of real values in the range
of 0 and 1 — here it aggregates 10 answers provided by the Dense
layer with 10 neurons

Loss function is a multi-class logarithmic loss: target is ti,j and the
prediction is pi,j

L; = =%,t; ;log(pi ;)

Train the model (‘fit‘) using selected batch & epoch sizes on training
& test data
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Exercises — Execute Multi Output Perceptron Model
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MNIST Dataset — A Multi Output Perceptron Model — Output & Evaluation

Epoch 7/20
60000/60000 [ I
Epoch 8/20
60000/60000 [ I
Epoch 9/20
60000/60000 [ I
Epoch 10/20
60000/60000 [ ]
Epoch 11/20
60000/60000 [ I
Epoch 12/20
60000/60000 [ I
Epoch 13/20
60000/60000 [ I
Epoch 14/20
60000/60000 [ I
Epoch 15/20
60000/60000 [ I
Epoch 16/20
60000/60000 [ I
Epoch 17/20
60000/60000 [ I
Epoch 18/20
60000/60000 [ I
Epoch 19/20
60000/60000 [ I
Epoch 20/20
60000/60000 [ I

# model evaluation

26us/step
26us/step
25us/step
26us/step
26us/step
25us/step
26us/step
25us/step
25us/step
24us/step
25us/step
25us/step
25us/step

24us/step

score = model.evaluate (X test, Y test, verbose=VERBOSE)

print ("Test score:", score[0]
print ('Test accuracy:', score[l]

10000/10000 [ ]
Test score: 0.33423959468007086
Test accuracy: 0.9101

- Os

4lus/step
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loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

L4419

L4271

L4151

.4052

.3968

.3896

.3832

L3777

L3727

.3682

.3641

.3604

.3570

.3538

acc:

acc:

acc:

acc:

.8838

.8866

.8888

.8910

.8924

.8944

.8956

.8969

.8982

.8989

.9001

.9007

.9016

.9023

(Dense (Softmax (output

Layer) Layer) probabilities@
\ ,’
\ ’
\\ ,/
\
,/
U4 \\
4 ~
’ \*A‘
(input m = 784) (10 neurons sum (softmax (NB_CLASSES = 10)
with 10 bias) activation)

How to improve the model design by extending the neural network topology?
Which layers are required?

Think about input layer need to match the data — what data we had?

Maybe hidden layers?

How many hidden layers?

What activation function for which layer (e.g. maybe RelLU)?

Think Dense layer — Keras?

Think about final Activation as Softmax - output probability
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[Video] Multi Output Perceptron — More Details

Wm Y12

Y1 M

o~/

M OUTPUTS

> Ml o) 1:20/4:26

Y=XW+B

= &11

X12

XlK‘ *

e/

K INPOTS

W11W12 Wim
hWogy @ Woy
® ® [ ]
kW2 ® Wim

B,

[8] YouTube Video, The Linear model with Multiple Inputs and Multiple Outputs Detail Explanation
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Formalization of Supervised Learning & Theory of Generalization

O
O
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Exercises — Execute Multi Output Perceptron Model and Test on Training Dataset
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Learning Approaches — Supervised Learning — Formalization

= Each observation of the predictor measurement(s)
has an associated response measurement:
=" lnput X =T,,..., T,
= Qutput ¥t =1,..,n

= Data  (Xy, ¥y )5 ey (Xns Uy )
= (the output guides the learning process as a ‘supervisor)

" Goal: Fit a model that relates the response to the predictors
= Prediction: Aims of accurately predicting the response for future observations

= |nference: Aims to better understanding the relationship between the
response and the predictors

Supervised learning approaches fits a model that related the response to the predictors Training Examples
Supervised learning approaches are used in classification algorithms such as SVMs (Xl, yl), ceey (XN, yN)
Supervised learning works with data = [input, correct output]

(historical records, groundtruth data, examples)
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Feasibility of Learning from Data — Formalization

= Theoretical framework underlying practical learning algorithms

= E.g. Support Vector Machines (SVMs)
= Best understood for ‘Supervised Learning’
= Valid for bascially all machine learning algorithms

= Theoretical background used to solve ‘A learning problem’
* |nferring one ‘target function’ that maps

between input and output

= Learned function can be used to
predict output from future input
(fitting existing data is not enough)

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization

Unknown Target Function

f: X—=Y

(ideal function)
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Summary Terminologies & Importance of Theory of Generalization

= Target Function
= |deal function that ‘explains’ the data we want to learn

= Labelled Dataset (samples)
= ‘in-sample’ data given to us:

= L earning vs. Memorizing
= The goal is to create a system that works well ‘out of sample’
= |n other words we want to classify ‘future data‘ (ouf of sample) correct

= Dataset Part One: Training set
= Used for training a machine learning algorithms
= Result after using a training set: a trained system

= Dataset Part Two: Test set
= Used for testing whether the trained system might work well
= Result after using a test set: accuracy of the trained model
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Unknown Target Function

f: X =Y

i

(ideal function)

<_____..___-

Training Examples

(x17y1)’ ot (XNJ yN)

(historical records, groundtruth data, examples)

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization

Elements we
not exactly
(need to) know

Elements we
must and/or
should have and
that might raise
huge demands
for storage
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Mathematical Building Blocks (1) — Our Linear Example

Unknown Target Function 1, Some pattern eXiStS
f: X =Y )
(dea Tohetiom 2. No exact mathematical

formula (i.e. target function)
3. Data exists

v

Training Examples
(X17 yl )7 Y (XN7 yN)

(historical records, groundtruth data, examples)

(if we would know the exact target function we dont need
machine learning, it would not make sense)

(decision boundaries depending on f) d

Iris-virginica if Z w;xz; > threshold

=1 (w; and threshold are

still unknown to us)

d
Iris-setosa if Z w;x; < threshold
i=1

d (we search a
h(x) = sign E w.z, | — threshold |;h € H functionsimiliar -
1 o like a target function)
1=
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Feasibility of Learning — Hypothesis Set & Final Hypothesis

" The ‘ideal function” will remain unknown in learning Unknown Target Function
f: X—=>Y

= |mpossible to know and learn from data
= |f known a straightforward implementation would be better than learning
» E.g. hidden features/attributes of data not known or not part of data

= But ‘(function) approximation’ of the target function is possible
= Use training examples to learn and approximate it
= Hypothesis set 7{ consists of m different hypothesis (candidate functions)

’]L[ — {hla e hm}; ‘select one function’ qg: X =Y

that best approximates

Hypothesis Set

W ey | Y | T
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Unknown Target Function Elements we

not exactly
f X =Y (need to) know
(ideal function)
i
1
1
1
1
1
1
\:/ Elements we
.. must and/or
Training Examples should have and
X cees | X that might raise
( 17y1): 7( NJyN) huge demands
(historical records, groundtruth data, examples) for storage

Final Hypothesis

g~ f

Hvpothesis Set

H=1{h}; geH
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Mathematical Building Blocks (2) — Our Linear Example

(decision boundaries depending on f)

H = {h1, .., hn};

(we search a function similiar
like a target function)

d
h(x) = sign ( ( Z uxl) — th'r'eshold) sheH

Final Hypothesis

g~ f

d
h(x) = sign ( ( Z w, T, ) — th'r'eshold) ;heH

=1

(activation
function)

input nodes t=04

Hvpothesis Set

H = {h}, geH (trained perceptron model

and our selected final hypothesis)

(Perceptron model — linear model)
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The Learning Model: Hypothesis Set & Learning Algorithm

= The solution tools — the learning model:

1. Hypothesis set H{ - a set of candidate formulas /models

2. Learning Algorithm _4 - ‘train a system’ with known algorithms

Training Examples

(X0, 91)s s (X Uy)

Y

Learning Algorithm (‘train a system’)

Final Hypothesis

N

Hypothesis Set

H=A{h};, geH

‘solution tools’
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A4

g~ f

= Qur Linear Example

1.
2.

Perceptron Model

Perceptron Learning
Algorithm (PLA)
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Unknown Target Function Elements we

not exactly
f X =Y (need to) know
(ideal f

i

nction)

<________-—

Elements we

.. must and/or
Training Examples should have and
X s | X that might raise

( 17y1)a :( N’yN) huge demands
(historical records, gropndtruth data, examples) S

Learning Algorithm (‘train a system’) Final Hypothesis

g~ f

Hvpothesis Set

H=A_{h}; geH
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Mathematical Building Blocks (3) — Our Linear Example

A 123 y
Unknown Target Function 1 T (XN yl)? ey (XN’ yN)
fr XY 2 1011 (training data)
(ideal function) 3 1101
! 4 1111
i 5 00 1-1 ¢
1 3 P . ey
i B o1 0q SO 2(1,1, threshold
-
\l, 7 0111 o
Training E : N v xa (training phase;
rainin Xamples - .
geme Find w, and threshold
(%15 41)s s (X Yy) (algorithm uses that fit the data)
(historical records, grolindtruth data, examples) training dataset)
output
X, 0.3 node
v
Learning Algorithm (‘train a system?) Final Hypothesis
g g=f Y
A . )
(Perceptron|Learning Algorithm) .
(activation
function)

input nodes t=04
Hypothesis Set

H = {h}, geH (trained perceptron model

and our selected final hypothesis)

(Perceptron model — linear model)
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{

Different Models — Hypothesis Set & Unlimited ‘Degrees of Freedom

Hypothesis Set

H=A{h}; geH 9 ‘o] o .
H = {hl,...,hm}; S a9 ' ° 4 .

(all candidate functions
derived from models
and their parameters)

(e.g. support vector machine model)

output

xl
= Choosing from various model approaches h,, X, v
..., h, is a different hypothesis ]’LQ _
= Additionally a change in model parameters of X, (activation
h,, ..., h,, means a different hypothesis too inputnodes  Xo(bias) "

(representing the threshold)

(e.g. linear perceptron model)
‘select one function’

that best approximates

Final Hypothesis h
g~ f m

(e.g. artificial neural network model)
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MNIST Data — Testing on Training Dataset — Results & Discussion

¢ . . . 10112/60000
" Memorizing vs. Generalization g
- How much we got? 15840/60000
. 17280/60000
= \WWe memorize the data o sa000
and created a model from it 2oaare0000
% 24512/60000
|
Ng unseen datz?\ us‘ed 25952160000
this no generalization! SRR

31712/60000
33152/60000
34592/60000
36032/60000
37472/60000
38912/60000
40352/60000
41792/60000
43232/60000
44672/60000
46080/60000
47520/60000
48768/60000
50208/60000
51648/60000
53088/60000
54528/60000
55968/60000
57408/60000
58848/60000
60000/60000

Jsing TensorFlow backend.
‘est score: 0.035654142725043254
‘est accuracy: 0.9916




Exercises — Train Perceptron on Testing Dataset and Test on Training Dataset
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Exercises — Train on Testing Dataset & Test on Training Dataset & Increase Epochs

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 44 / 50



[Video] Neural Networks Summary

_ Connection
~ Weight

[7] YouTube Video, Neural Networks — A Simple Explanation
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