Artificial Intelligence Data Analysis (AIDA)

15t School for Heliophysicists

Prof. Dr. — Ing. Morris Riedel

Associated Professor

School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland

Research Group Leader, Juelich Supercomputing Centre, Forschungszentrum Juelich, Germany

I @Morris Riedel (O} @MorrisRiedel y
in orris Riede i @MorrisRiede

LECTURE 4

Supervised Learning — Multi-Class Classification & Generalization

January 20, 2020
CINECA, Bologna, Italy

SRS .
P5EY. UNIVERSITY OF ICELAND ‘ LICH
>, § SCHOOL OF ENGINEERING AND NATURAL SCIENCES J U

Q
A
“OYsead Forschungszentrum

S,

Setaeme (IDEEP HELMHOLTZAI|Sa sison

CENTRE

FACULTY OF INDUSTRIAL ENGINEERING,
MECHANICAL ENGINEERING AND COMPUTER SCIENCE

8 clusters

(IRIS dataset initially used for classification, cf. Lecture 1)

[9] Scitkit-Learn

[10] M.Goetz, M. Riedel et al., ‘HPDBSCAN - Highly Parallel

Petal length

Petal length

Review of Lecture 3 — Unsupervised Learning

3 clusters

Ground Truth

Vir.ginica

’. Yy sit:;&our
¢ wco o@

DBSCAN’, MLHPC Workshop at Supercomputing 2015

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization

Estimated number of clusters: 3

Petal length

Out Est?mated number of cll;lster‘si 3
Estimated number of noise points: 18
Homogeneity: ©.953
Completeness: ©.883
V-measure: 0.917
Adjusted Rand Index: ©.952
Adjusted Mutual Information: ©.916
Silhouette Coefficient: 0.626

Petal length

R

hypergrid

H
H
4 H
H
e !
.| i
B H
H
H
H

Sortand | i i
distribute [T poscan [T
L] H - H
H H
i H
Freprocessing 1 Clustering ;

Spatially
ordered
data

Temporary'
labels

T
|-| Cluster relabeling I

(parallelization of machine learning algorithms not trivial)

HPDBSCAN ')
minFaints | (———— 3 = — T - NN St
wraints | {F———] 3 —

! i
H
H | overlay | | 4] | Estimate Merge | i o A
T splits halos i s =
3

(using DBSCAN for
outlier detection,
e.g. to clean a dataset
for data classification)

| (clustering example of tweets from Twitter)

2/50

Outline of the School

Time Day1 Day 2 Day 3
9-10 Welcome and intro to the school Space missions data acquisition Review of ML applied to
(Giovanni Lapenta, Jorge Amaya) (Hugo Breuillard) heliophysics
(Peter Wintoft)
10-11 Introduction and differences Data manipulation in python with Review of ML applied to
between Al, ML, NN and Big Data pandas, xarray, and additional heliophysics
(Morris Riedel) python tools (Peter Wintoft)
(Geert Jan Bex)
Coffee break Coffee break Coffee break
11:30 - Unsupervised learning Feature engineering and data Reinforcement learning
12:30 (Morris Riedel) reduction (Morris Riedel)
(Geert Jan Bex)
Lunch Lunch Lunch
14 -15 Unsupervised learning Data reduction and visualization Physics informed ML
(Morris Riedel) (Geert Jan Bex) (Romain Dupuis)
15-16 Supervised learning CNN, DNN Explainable Al
(Morris Riedel) (Morris Riedel) (Jorge Amaya)
Coffee break Coffee break Coffee break
16:30 - Supervised learning CNN, DNN Performance and tuning of ML
18:00 (Morris Riedel) (Morris Riedel) (Morris Riedel)

Outline

= Supervised Learning & Multi-Class Classification Problems

= Supervised Learning Revisited & Role of Deep Learning Frameworks
Formalization of Machine Learning Fundamentals & Perceptron Model
MNIST & Multi-Class Classification Problems
Relevance of Data Exploration, Data Preparation & Normalization
Multi-Output Perceptron Learning Model

= Supervised Learning & Theory of Generalization

» Formalization of Supervised Learning & Mathematical Building Blocks
Feasibility of Learning & Understanding the Theory of Generalization
Role Learning Algorithms, and Final Hypothesis
Different Models in Hypothesis Set & Unlimited ‘Degrees of Freedom’
Using Training Dataset as Training Dataset and as Testing Dataset

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 4/50

Supervised Learning and Multi-Class Classification Problems

O
O

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 5/50

Learning Approaches — What means Learning from data — Revisited

= The basic meaning of learning is ‘to use a set of observations to uncover an underlying process* [1] Image sources: Species Iris Group of
" The three different learning approaches are supervised, unsupervised, and reinforcement learning North America Database, www.signa.org

= Supervised Learning

= Majority of methods follow this
approach in this course

= Example: credit card approval based
on previous customer applications

(what type of flower is this?)

= Unsupervised Learning I

= Often applied before other learning = higher level data representation

= Example: Coin recognition in vending {ZJtA-C- Cheng ejva’v "7“0NA5-'
. . . nstance-aware Neura
machine based on weight and size

Architecture Search’, 2018
= Reinforcement Learning | /uﬁ
= Typical ‘human way’ of learning ’fW i

= Example: Toddler tries to touch a hot cup of tea (again and again) Bl oI

ures

> Day 1 offers details about unsupervised & supervised learning with examples & Day 3 offers an introduction to reinforcement learning

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 6/50

/7 kD; nden: (111 ctives

Learning Approaches — Supervised Learning — Revisited

= Each observation of the predictor measurement(s)
has an associated response measurement:
=" lnput X =T,,..., T,
= Qutput ¥t =1,..,n

= Data (Xy, ¥y)5 ey (Xns Uy)
= (the output guides the learning process as a ‘supervisor)

" Goal: Fit a model that relates the response to the predictors
= Prediction: Aims of accurately predicting the response for future observations

= |nference: Aims to better understanding the relationship between the
response and the predictors

Supervised learning approaches fits a model that related the response to the predictors
Supervised learning approaches are used in classification algorithms such as SVMs
Supervised learning works with data = [input, correct output]

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 7/50

Deep Learning Frameworks using GPUs also good for Artificial Neural Networks

= TensorFlow

= One of the most popular deep learning frameworks available today

= Execution on multi-core CPUs or many-core GPUs

" Tensorflow is an open source library for deep learning models using a flow graph approach

" Tensorflow nodes model mathematical operations and graph edges between the nodes are
so-called tensors (also known as multi-dimensional arrays)

= The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPUs)
" Tensorflow work with the high-level deep learning tool Keras in order to create models fast
= New versions of Tensorflow have Keras shipped with it as well & many further tools

client

run

master

worker A

m Keras

= Often used in combination with low-level frameworks like Tensorflow

worker B

[3] Tensorflow
Web page

Keras

[4] Keras
Web page

Tensorflow, CNTK, or Theano

= The key idea behind the Keras tool is to enable faster experimentation with deep networks

" Created deep learning models with Keras run seamlessly on CPU and GPU via low-level deep learning frameworks

L] Keras is a high-level deep learning library implemented in Python that works on top of existing other rather low-level deep learning frameworks like

Day 2 offers more details on how these frameworks and tools are used with GPUs and for selected Deep Learning Techniques

Exercises — Preparing & Installing the Keras Framework

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 9/50

DEEP Cluster: Preparing & Installing the Keras Framework

[riedell@deepv ~]$ module load Python/3.6.8

[riedell@deepv DeepLearningl$ pip install --user keras|

[riedell@deepv ~]$ pip install --user keras
Requirement already satisfied: keras in ./.local/lib/python3.6/site-packages (2.2.4)
ollecting numpy>_1 9.1 (from keras)

Downloadlng

ollectlng h5py (from keras)
Downloading htt fi
11nux1_x86_64 whl lZ 9MB)

| 2.9MB 918kB/s
.9.0 in /direct/usr_local/software/skylake/Stages/2019a/software/Python/3.6.8-GCCcore-8.3.0/1ib/python

ollecting keras-applications>=1.0.6 (from keras)
Downloading https i ki

100% |
ollecting scipy>:
Downloading "
p36m-manylinuxl ><86_64.wh1 (25.2MB)
| 25.2MB 463kB/s
0.5 (from keras)

equlrement already satisfied: pyyaml in /direct/usr_local/software/skylake/Stages/2019a/software/Python/3.6.8-GCCcore-8.3.0/1ib/python3.6/
ite-packages (from keras) (5.1)
nstalling collected packages: numpy, h5py, keras—applications, scipy, keras-preprocessing
The scripts f2py, f2py3 and f2py3.6 are installed in '/p/home/jusers/riedell/deep/.local/bin' which is not on PATH.
Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.
Successfully installed h5py-2.10.0 keras-applications-1.0.8 keras-preprocessing-1.1.0 numpy-1.17.3 scij .3.1

Keras

[4] Keras
Web page

Perceptron Model — Mathematical Notation for one Neuron

non-linear linear combination
activation function of input data

1 1

m
J=gq 1*w0+2xi*wi » Y=g w0+XTW

T T 1=1

Output Bias T Constants
Sum
I w1

" Simplify the perceptron learning model
formula with techniques from linear T Wm
algebra for mathematical convenience m

Input Trainable
Data Weights

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 11/50

Handwritten Character Recognition MNIST Dataset

= Metadata
= Not very challenging dataset, but good for benchmarks & tutorials

= When working with the dataset

= Dataset is not in any standard image format like jpg,
bmp, or gif (i.e. file format not known to a graphics viewer)

= Data samples are stored in a simple file format that is designed
for storing vectors and multidimensional matrices (i.e. numpy arrays)

= The pixels of the handwritten digit images are organized row-wise

Handwritten Character Recognition
MNIST dataset is a subset of a larger
dataset from US National Institute of
Standards (NIST)

MNIST handwritten digits includes
corresponding labels with values 0-9 and
is therefore a labeled dataset

MNIST digits have been size-normalized
to 28 * 28 pixels & are centered in a fixed-
size image for direct processing

Two separate files for training & test:
60000 training samples (~47 MB) &

10000 test samples (~7.8 MB)

with pixel values ranging from 0 (white background) t0cass O HERANEZTNHE

to 255 (black foreground) classification o 3 [@ [1] 7] [[#] (6] 7] M|

= |mages contain grey levels as a result of an anti-aliasing technique problem) % g % % % % % % % %
used by the normalization algorithm that generated this dataset g 719 7 9 ® 5633

lo RvIREARCARF iRl MTANC VAR =

ZT:;rEe:::??j/a:szzs import mnist (downloa(.:ls data into ~home/.keras/dat_asets as % % % % % % %

K # download and shuffled as training and testing set StogZifélfafz;r;zgfg S;:qu;,;zaso?;c;\;f;ison) E‘ EI @ E |§| E' @
(X_train, y_train), (X_test, y_test) = mnist.load_data() EI E' @ |E| E E‘ E E |Z|

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 12 /50

MNIST Dataset — Data Access in Python & HPC Download Challenges

= WWarning for very secure HPC environments
= Note that HPC batch nodes often do not allow for download of remote files

Compute
Node

= A useful workaround for download remotely
stored datasets and files is to start the Keras
script on the login node and after data
download stop the script for a proper execution
on batch nodes for training & inference

SESRSNNEN
E=rFE

(=]

NoN WS ENS
SIS SNISGNEY
EINESNSES)
SSISESSIEENEY
SIPINOE e HH
SNRNARYSWNS
SIONICE A N =
NRNSNWSNSE
M=

Compute
Node

download and shuffled as training and testing set
(X_train, y_train), (X_test, y_test) = mnist.load_data()

Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz
11493376/11490434 [===== = = = ==] - 6s lus/step

[riedell@juronl-adm datasets]$ pwd
p/home/jusers/riedell/juron/.keras/datasets
[riedell@juronl-adm datasets]$ 1s -al
otal 11234

drwxr-xr-x 2 riedell jusers
drwxr-xr-x 3 riedell jusers
-rw-r--r-- 1 riedell jusers 11490434 Jan 20 22:05 mnist.npz

import numpy as np
from keras.datasets {import mnist (downloads data into “home/.keras/datasets as
K NPZ file format of numpy that provides

download and shuffled as training and testing set storage of array data using gzip compression)

(X_train, y_train), (X_test, y_test) = mnist.load_data()

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization

Compute
Node

Compute
Node

4096 Jan 20 22:05
4096 Jan 20 22:03

13 /50

Exercises — Download MNIST Data

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 14 /50

DEEP Cluster: Download MNIST Data

= Execute on Login-Node the Data Exploration Script to Download MNIST Data
= [oad the following module environment:

[riedell@deepv 2019-HPC-Course-MLDL-Parts]$ module load Python/3.6.8
[riedell@deepv 2019-HPC-Course-MLDL-Parts]$ module load scikit/2019a-Python-3.6.8

[riedell@deepv 2019-HPC-Course-MLDL-Parts]$ module load TensorFlow/1.13.1-GPU-Pyth

MNIST-training.py

= Python explore-MNIST-training.py

MNIST Dataset — Training/Testing Datasets & One Character Encoding

" Different phases in machine learning
. Training phases is a hypothesis search TR e

= Testing phase checks if we are on the right track
once the hypothesis is clear

H H H - e e 0 © © 0 © 0 © e o 6 © 0 46 130 L

= Validation phane for model selection (set fixed R N T T+

t d t d It © © © ©0 © O 18 171219253253 25325319580 9 ©

parameters and set model types e f Dl e R e S

n O © 0 o o © © o 6 78 25225212559 0 18 208
ne 1or training on I.e. tralining se

] O frt t o 6 o o o 1305 3126 o 0 o o o
INg on l.e. test se

ne 1or testing .e.

Exact seperation is rule of thumb per use case
(e.g. 10 % training, 90% test)

Practice: If you get a dataset take immediately test data away
‘throw it into the corner and forget about it during modelling’)

Once we learned from training data it has an ‘optimistic bias’
Usually start by exploring the dataset and its format & labels

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization

8w @ m s e 5 i B s M@ EE G NE B
e eE Ak Bk SEIERTEET SR ERT K
i s e nle sl e SRR LR R
R LR SRIEN I R R LERE
EREEREEREE R R R R R R A
26 136 175 26 166 255 247 1270 © © © 6 6 6 0 6 0 6 06 6 6 0 06 0 06 48 23825
Smmr e v prriiiidiLnny
o i s 0 e o HIH I I
mmae e s s o I IR e
my s s LR LRy
S EEREREEER SEEHE R BT
EEERERERER SRy
R R SEEREI R o
REREREEEEEE SR Rk
SRR SRR SIS RRE
Bhemtntates Sogsisai mme s 0 e ol
By ity Pisniammmme s e a e
mEml it Ell SHIHIE O
Lmmma o bo SRR R ER
mmmae o s e st SRR R Y
S ot Peang siEmm s s st
SEEEEEEEEEE SR
T

R EEEEEEE SRR s g
TEEER LR

EEEEEEEEEE SEL IR ARG ERR R
SRR RN

EEEEEEEEEE SRR R ERE TSN

-
:

s & & e 8 58 9 8 8 e e © e © 06 © © 0 © © © © 0 0 0 o
SHSLEMIBEIHEY muimmaumiabionE i
LR R R R R ER R T
R A I R LR R R R
R R R R R AR R R R
AR IR R R R R
SRR e uhsuLunes waEon s a
mmmme st sutomua g8) s
Simimals e sl e e St Bl s e ee S8
Pommer i rel gacimman e s b
Commas g ps s pimmen et e e
fLEmRl it iaid b amsmnkeamesye o
Sammams Ml fe gt Sl mummal s ne sl e
sapmames Mt e s p Sl s immamni s one e s
SEEms ety meg mEoen § o et
Smmae s as S mmel s S dG sy
mEma s Mt e Il mmEems amim e
SSsman il f G emmaimmee e g
e R R R R
i R R L R
Powtemmmme s 0SS EESsERs s ses B
SRR NE BRI LR LR R R
SR L LR T
PrEssEssa sy smcam s f g
I I LI R
BEEELER TR FEN S SR BRI RE L SR RN
SRR LR N R AR L R AR
BRI R ERE RN R B SRT B R T RN

Label:
o

‘training set’

153

‘test set’

Trainin% Examples

X]_?y}_ ,'='7 XN7yN

]
(historical records, groundtruth data, examples)

16 /50

MNIST Dataset — Data Exploration Script Training Data & JupyterLab Example

= = JupyterLab X - o X
'import numpy as np - Lo_ad_lng MNIST ! (:Q ®a h(tyQ’Jupy'cyJ;:fzjuclich.dc/uscr, w0 e @ ¥ LinDO MBSO =
from keras.datasets import mnist tralnlrlg datasets S Fle G Vew R Keme b Tbs Seungs Hep
(X) with labels (Y) o [oonmisr o |
\ stored in a binary jprxRErRC e i ©
download and shuffled as training and testing set \\ numpy format ; o T
(X_train, y_train), (X_test, y_test) = mnist.load_data() 1. Format is 28 x 28 .
pixel values with
function to explore one hand-written character grey level from 0 .
def character_show(character): (white background) | ¢ (01 <13 rormat (o
for y 1in character: to 255 (black é
row = "" foreground) . -
for x 1in y: ||| i
row += '{0: <4}'.format(x) “ o 6 5 6 5 65 o0 606 60 606 6 60 60 60 6o 00 oo
print(row) i[* Small helper R
! function that prints Ll LG L Ll mmnmmmrmmaa
|| row-wise one PLiLEL R RRRERERERISTIE ST
view first 10 hand-written characters 1 ‘hand-written® 9 9 @ 0 ¢ o ¢t o i Mmoo o 0 0 9 0 6 0 0 O o o 0
for i in range (0,9): \ character with the SEEEEEEEEEEE S T RN R
character_show(X_train[i]) grey levels stored S 8 6 6 o 0 0 0 0 0 0 o 0 o n e smaie o o o o o o o
print("\n") in training dataset
print("Label:") Should reveal the ol
print(y_train[i]) nature of the ;fj" i [5] Jupyter
print("\n" number (aka label) jupyter Web
T , Page
— e’
" Example: loop of the training dataset (e.g. first 10 characters as shown here) PR—
= At each loop interval the ‘hand-written‘ character (X) is printed in ‘matrix notation‘ & label (Y)

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization

17 /50

MNIST Dataset with Perceptron Learning Model — Need for Reshape

= Two dimensional dataset (28 x 28)

[clcoNoNo N oo No Mol ol ol olio Mo Mo llolf ol oMol ol ol ol ol M ol ol ol o)
[cl>NoNoNoN oo NoNoN ol oo o Moo lolo lo Mo Mol ol o Mo Mo Mo o o}

Label:

= Does not fit well with input to Perceptron Model

= Need to prepare the data even more
= Reshape data = we need one long vector

[cc-NoNo N oo No Mol ool oo Mo Mo Mol o lio Mo Mol ol ol o B ol ol o i ol o

[clcNoNoNoN oo NoNoNol oo o Nolollolfo oo Nolcllc Mo lo Mo lol ol o)

[SICIRCNITING, ol o o Mo o i o S o B I © o S o 3 © I © o o ol ol o o o S o o

5
3

[¢] [0} (0] [0} [¢] [0}
[} [} [} [} [} [}
[} [} [} [} [} [}
[¢] 0] [¢] 0] [¢] 0]
[} o [} o [} o
[} [} [} [} [} [}
[} [} [} 30 36 94
[} [0} 49 238 253 253
[} [} 18 219 253 253
[} [} [} 80 156 107
[¢] [} [¢] [} 14 1
[} 0 [} [} [} [}
[} [} [} [} [} [}
[¢] [} [¢] [} [¢] [}
[°] [0} [¢] [0} [¢] 0]
[} [} [} [} [} [}
[0} [} [} [} [} [}
[°] [0} [¢] 0] [¢] (0]
[¢] 0] [¢] [0} [¢] [0}
[} [} [} [} [} [}
[0} [} [} [} [} 24
[¢] [0} [¢] 23 66 213
[} 18 171 219 253 253
172 226 253 253 253 253
6 253 253 253 212 135 132
[¢] [0} [¢] [0} [¢] [0}
[} [} [} [} [} [}
[} [} [0} [} [} [}

©® @@ oo

154
253
253
253
154
139

@@ e

114
253
253
244
16
[¢]

[}

[}

[olcloRN oo}

170
253
253
253
253

221
253
253
133

[clclo)

oo @@

253

205

oo oo

18
253
253
198
4B

70
225
240
45

46

229
253
253

[cl oMo

@0 eoe

130

198

e e o

oo oo

126
253
253
247
43

108
253
253
93

183
253
253
81

oo 0o o

oo eoe

136
253

201

@000

(ool olNo}

175!
225
93

oo oo

25

150
253
253
253
250
78

oo o000

@00 @006

OO0 N g [elcNoN ool o oMo

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization

@@ @0

255

@ uN
o b
N

[clcNcNoNoN N No Mool oo Mo Moo oo oo

LNV e e e
© £
@ S

o w
©

[el>NoNo Mol oo Mo Mo o o Jo o I lc o e o No

AN

[clcHoNoN NN NoNoN oo oo Moo lcll ol Mol ool Il il o lo I ol o)

[el>IoNo Mol oo Mool ool o Mo Mol ol o o B Mo ol o lo B Mool o}

[clcHcNoNoNoNCNoNoNolclolo Moo lollc ool oo llo oMol ool ol o)

[el>oNo NN olo Mool ool o Mo Mol ol o lo Mo Mo ol o lo B o lo o o}

[clcHcNoNoNoNCNoNoN oo oo Moo lollc Il N oo llo oMol ool ol o)

. Note that the reshape from two dimensional MNIST data to one
long vector means that we loose the surrounding context

" Loosing the surrounding context is one factor why later in this
lecture deep learning networks achieving essentially better
performance by, e.g., keeping the surrounding context

E

18 /50

MNIST Dataset — Reshape & Normalization — Example

784 dinput pixel values per train samples

(one |Ong input VeCtor 784 dinput pixel values per test samples

. [o. 0. 0. 0. 0. 0.
with length 784) , - o , - o
0. 0. 0. 0. 0. 0. . . L. .
0. 0. 0. 0. 0. 0. (two dimensional original input)
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. © o 6 ©6 6 © 6 © 6 6 06 6 ©6 06 ©6 06 6 06 6 ©6 6 ©6 06 0 0 0 0 0
0. 0. 0. 0. 0. 0. © ©o 6 © 6 © ©6 © 06 6 0 6 ©6 6 06 0 6 0 6 06 6 06 0 0 0 0 0 0
0. 0. 0. 0. 0. 0. © o 6 o 6 © © © 0 ©6 0 6 ©6 0 6 0 6 0 6 06 6 ©6 0 6 0 0 0 0
0. 0. 0. 0. 0. 0. © 06 © © © © 06 © 6 o 06 6 ©6 6 e 06 o 06 6 06 6 © 06 o 0 0 0 0
0. 0. 0. 0. 0. 0. © 06 © © © © 6 © 6 © o e © 6 e 6 o 06 6 © 6 © 6 o 0 0 0 0
o 0 o o 0 o © 6 6 © © © 6 © 06 0 0 6 3 18 18 18 126 136 175 26 166 255 247 1270 0 0 0
ZCl : : . : : : © 6 © © © © 0 © 30 36 94 154 170 253 253 253 253 253 225 172 253 242 195 64 0 0O 0 0
0. 0. 0. 0. 0. 0. © 6 6 © 0 © 0 49 238 253 253 253 253 253 253 253 253 251 93 82 82 56 39 0 0 O 0 0
0. 0. 0. 0. 0. 0. © 6 6 0 06 © 0 18 219 253 253 253 253 253 198 182 2472416 © 6 © 0 © 0 0 0 0
. 0. 0. 0. 0. 0. 0. © o © ©0 © © 0 © 80 156 107 253 253 20511 O 43 1546 © 6 ©6 © © 0 0 0 0
p— . 0. 0. 0. 0. 0. 0. © o 6 0 © ©6 0 6 0 14 1 1542539 6 © 6 ©O© 6 ©6 6 6 0 6 0 0 0 0
© 6 © © © © 0 © 06 0 0 1392531%2 6 © 06 6 © 6 © 0 o 0 0 0 0
. 0. 0. 0. 0. 0. 0.
© 6 © © © © 06 © 06 0 ©0 11 19025370 6 © ©6 © © 6 © 0 © 0 0 0 0
0. 0. 0. 0. 0. 0. ® © © © © © © © O O O 6 35 2412251601081 6 © 6 O O O O O 0 0
:B 0. 0. 0. 0. 0. 0. © o © 06 © 06 o 6 0 0 0 0 0 8l 24025325311925 6 O ©6 0 O 06 O 0 0
m 0. 0. 0. 0. 0. 0. © 6 6 ©6 6 © 06 © 06 6 0 06 0 0 45 1862532531527 6 © O O O O 0O 0
0. 0. 9. 0. 0. 9. © o6 6 06 6 © 06 © 06 6 0 6 0 06 ©0 16 93 25225318706 © 06 © O O 0 0
o 0 o o o o © o 6 o0 ©6 © 0 ©6 0 6 0 6 06 0 6 0 0 24925324964 6 0 © 0 0 0 0
) : :) : : e e © e e e e e e 6 e e 6 0 46 130 1832532532072 O O O O 0 0 0
0. 0. 0. 0. 0. . © o © 0 © © O © 0 © 0 ©O 39 148 229 253253 2532501820 © © © O O © 0
0. 0. 0. 0. 0. 0. e o © 0 6 ©6 0 6 0 0 24 114221 253253 25325320178 @6 O O O O 0O O O 0O
0. 0. 0. 0. 0. 0. © 6 0 © © © 0 © 23 66 213253253253 2531988L 2 © © © © 0 © 0 0 0 0
0. 0. 0.01176471 0.07058824 0.07058824 0.07058824 6 o 0 6 0 0 18 171219 253 253 253 253 1958 9 6 6 © @ © 06 06 06 06 6 0 0
®© 0 0 © 55 172 226 253 253 253253 24413311 6 06 6 O 6 © 06 ©6 06 © 0 0 0 0
0.49411765 0.53333336 0.6862745 0.10196079 0.6509804 1. 6 0 © 0 136253 253253212 13513216 6 © © © © o o o6 o © o © o o o o
0.96862745 0.49803922 0. 0. 0. 0. e © © © © © o © © © © © 6 o o o e e o o e 6 o o o e e o
0. 0. 0. 0. 0. 0. © © © © 06 © © o e 6 o e 6 o e 6 e 6 6 e 0 o e 6 o 0 0 o
0. 0. 0.11764706 0.14117648 0.36862746 0.6039216 [¢] [¢] <] [¢] [¢] 0 [¢] [} [} [¢] [o] o] [¢] 0] [c] [¢] [0] [¢] [¢] [o] [¢] [¢] o] [} [} [0] o] [¢]
0.6666667 0.99215686 0.99215686 0.99215686 0.99215686 0.99215686
(numbers are 0.88235205 0.6745098 0.99215686 0.9490196 0.7647059 0.2509804 Labels
0. 0. 0. 0. 0. 0. s
between 0 and 1) 0. 0. 0. 0. 0. 0.19215687
©.93333334 0.99215686 0.99215686 0.99215686 0.99215686 0.99215686
0.99215686 0.99215686 0.99215686 0.9843137 0.3647059 0.32156864
0.32156864 0.21960784 0.15294118 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0.07058824 0.85882354 0.99215686
0.99215686 0.99215686 0.99215686 0.99215686 0.7764706 0.7137255

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 19/50

Exercises — Perform Reshape & Normalization on Different Training / Testing Data

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 20/50

MNIST Dataset & Multi Output Perceptron Model

= 10 Class Classification Problem
= Use 10 Perceptrons for 10 outputs with softmax activation function (enables probabilities for 10 classes)

(Dense (Softmax (output
Layer) probabilities) from keras.models import Sequential
from keras.layers.core import Dense, Activation
\ s’
\ ,/, # model Keras sequential
\\ P4 model = Sequential ()
\
- - # add fully connected layer - input with output
,’ model .add (Dense (NB_CLASSES, input_shape: (RESHAPED,)))
~
~
// \\ # add activation function layer to get class probabilities
N, model.add (Activation ('softmax'))
printout a summary of the model to understand model complexity
model . summary ()
(input m = 784) (10 neurons sum (softmax (NB_CLASSES = 10)
with 10 bias) activation) (parameters = 784 * 10 + 10 bias
. Note that the output units are independent among each other in contrast to neural networks with one hidden layer = 7850)
= The output of softmax gives class probabilities T o F r—
" The non-linear Activation function ‘softmax‘ represents a generalization of the sigmoid function - it squashes an dense_1 (bense) one, 10) 7850
n-dimensional vector of arbitrary real values into a n-dimenensional vector of real values in the range of 0 and 1 — activation_I (Activation) (None, 10) o
here it aggregates 10 answers provided by the Dense layer with 10 neurons

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 21/50

MNIST Dataset & Compile Multi Output Perceptron Model

. Comp||e the model m from keras.optimizers import SGD

.. . OPTIMIZER = SGD() # optimization technique
= Optimizer as algorithm used to update : (’

weights while training the model

£(x) f(x)

(minimization: substract gradient term
because we move towards local minima)

(finding this point x is the

goal of gradient descent) position a (current position)

= Specify loss function (i.e. objective

(the derivative of f
function) that is used by the optimizer \ e gy b=a+tyV f(a) l(oxfﬁ"t‘:“w“:’s
to navigate the space of weights ’ A Lo
i before the step) is steepest ascent)

= (note: process of optimization is also

(new position (weighting factor known as step-size,

after the step) can change at every iteration,

Xl zero gradient x2 Xa X also called learning rate) X X X

called loss minimization, cf. Invited

lecture Gabriele Cavalla FO) = Compile the model to be executed by the Keras backend (e.g. TensorFlow)

= Optimizer Gradient Descent (GD) uses all the training samples available for a

* Indicate metric for model evaluation step within a iteration

(e-g-; accCura CV) = Optimizer Stochastic Gradient Descent (SGD) converges faster: only one
. . training samples used per iteration
u SpEley loss function = Loss function is a multi-class logarithmic loss: target is ti,j and prediction is pi,j
. .. . " Categorical crossentropy is suitable for multiclass label predictions (default
= Compare prediction vs. given class label with softmax)

= E.g. categorical crossentropy

Li = =Y.t: . log(p; . [6] Big Data Tips,
specify loss, optimizer and metric ; 3 0 O(pl,'}) Gradient Descent

model.compile(loss='categorical_crossentropy', optimizer=0OPTIMIZER, metrics=['accuracy'])

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 22 /50

Full Script: MNIST Dataset — Model Parameters & Data Normalization

import numpy as np

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers.core import Dense, Activation
from keras.optimizers import SGD

from keras.utils import np utils

parameter setup -
- e

NB_EPOCH = 20 PR

BATCH SIZE = 128 '/’

NB CLASSES = 10 # number of outputs = number of digits

OPTIMIZER = SGD() # optimization technique

WVERBOSER=

NB_CLASSES: 10 Class Problem

NB_EPOCH: number of times the model is exposed to the overall training set — at
each iteration the optimizer adjusts the weights so that the objective function is
minimized

BATCH_SIZE: number of training instances taken into account before the optimizer
performs a weight update to the model

OPTIMIZER: Stochastic Gradient Descent (‘SGD‘) — only one training sample/iteration

download and shuffled as training and testing set

(X train, y train), (X test, y test) = mnist.load data()

X train is 60000 rows of 28x28 values --> reshaped in 60000 x 784
RESHAPED = 784

X train = X train.reshape (60000, RESHAPED)

X test = X test.reshape (10000, RESHAPED)

X train = X train.astype('float32")

X test = X test.astype('float32'")

normalize
X train /= 255
X_test /= 255

Data load shuffled between training and testing set in files

Data preparation, e.g. X_train is 60000 samples / rows of 28 x 28 pixel values that are
reshaped in 60000 x 784 including type specification (i.e. float32)

Data normalization: divide by 255 — the max intensity value

output number of samples
print (X train.shape[0], 'train samples')

print (X test.shape[0], 'test samples')

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization

to obtain values in range [0,1]
‘test set’

‘training set’

Trainin% Examples
(X] ’ yl)ﬂ '='7 (XN7 yN)

|
(historical records, groundtruth data, examples)

23 /50

Full Script: MNIST Dataset — Fitting a Multi Output Perceptron Model

(full script continued from previous slide)

convert class label vectors using one hot encoding ‘,"
Y_train = np_utils.to_categorical(y_train, NB_CLASSES) ‘,"
Y_test = np_utils.to_categorical(y_test, NB_CLASSES) ,»"

model Keras sequential ‘,"
model = Sequential() ‘,"

add fully connected layer - input with output
model.add(Dense (NB_CLASSES, input_shape=(RESHAPED,)))

add activation function layer to get class probabilities -
model.add (Activation('softmax'))

printout a summary of the model to understand model complexity
model.summary ()

specify loss, optimizer and metric -
model.compile(loss="'categorical_crossentropy', optimizer=OPTIMIZER, metrics=['accuracy'])

model training
history = model.fit(X_train, Y_train, batch_size=BATCH_SIZE, epochs=NB_EPOCH, verbose=VERBOSE) ™,

model evaluation

score = model.evaluate(X_test, Y_test, verbose=VERBOSE)
print("Test score:", score[0])

print('Test accuracy:', score[l])

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization

The Sequential() Keras model is a linear pipeline (aka ‘a stack‘) of
various neural network layers including Activation functions of
different types (e.g. softmax)

Dense() represents a fully connected layer used in ANNs that means

that each neuron in a layer is connected to all neurons located in the
previous layer

The non-linear activation function ‘softmax‘ is a generalization of the
sigmoid function — it squashes an n-dimensional vector of arbitrary
real values into a n-dimenensional vector of real values in the range
of 0 and 1 — here it aggregates 10 answers provided by the Dense
layer with 10 neurons

Loss function is a multi-class logarithmic loss: target is ti,j and the
prediction is pi,j

L; = =%,t; ;log(pi ;)

Train the model (‘fit‘) using selected batch & epoch sizes on training
& test data

24 /50

Exercises — Execute Multi Output Perceptron Model

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 25 /50

MNIST Dataset — A Multi Output Perceptron Model — Output & Evaluation

Epoch 7/20
60000/60000 [I
Epoch 8/20
60000/60000 [I
Epoch 9/20
60000/60000 [I
Epoch 10/20
60000/60000 []
Epoch 11/20
60000/60000 [I
Epoch 12/20
60000/60000 [I
Epoch 13/20
60000/60000 [I
Epoch 14/20
60000/60000 [I
Epoch 15/20
60000/60000 [I
Epoch 16/20
60000/60000 [I
Epoch 17/20
60000/60000 [I
Epoch 18/20
60000/60000 [I
Epoch 19/20
60000/60000 [I
Epoch 20/20
60000/60000 [I

model evaluation

26us/step
26us/step
25us/step
26us/step
26us/step
25us/step
26us/step
25us/step
25us/step
24us/step
25us/step
25us/step
25us/step

24us/step

score = model.evaluate (X test, Y test, verbose=VERBOSE)

print ("Test score:", score[0]
print ('Test accuracy:', score[l]

10000/10000 []
Test score: 0.33423959468007086
Test accuracy: 0.9101

- Os

4lus/step

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

L4419

L4271

L4151

.4052

.3968

.3896

.3832

L3777

L3727

.3682

.3641

.3604

.3570

.3538

acc:

acc:

acc:

acc:

.8838

.8866

.8888

.8910

.8924

.8944

.8956

.8969

.8982

.8989

.9001

.9007

.9016

.9023

(Dense (Softmax (output

Layer) Layer) probabilities@
\ ,’
\ ’
\\ ,/
\
,/
U4 \\
4 ~
’ *A‘
(input m = 784) (10 neurons sum (softmax (NB_CLASSES = 10)
with 10 bias) activation)

How to improve the model design by extending the neural network topology?
Which layers are required?

Think about input layer need to match the data — what data we had?

Maybe hidden layers?

How many hidden layers?

What activation function for which layer (e.g. maybe RelLU)?

Think Dense layer — Keras?

Think about final Activation as Softmax - output probability

26 /50

[Video] Multi Output Perceptron — More Details

Wm Y12

Y1 M

o~/

M OUTPUTS

> Ml o) 1:20/4:26

Y=XW+B

= &11

X12

XlK‘ *

e/

K INPOTS

W11W12 Wim
hWogy @ Woy
® ® []
kW2 ® Wim

B,

[8] YouTube Video, The Linear model with Multiple Inputs and Multiple Outputs Detail Explanation

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization

27 /50

Formalization of Supervised Learning & Theory of Generalization

O
O

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 28 /50

Exercises — Execute Multi Output Perceptron Model and Test on Training Dataset

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 29 /50

Learning Approaches — Supervised Learning — Formalization

= Each observation of the predictor measurement(s)
has an associated response measurement:
=" lnput X =T,,..., T,
= Qutput ¥t =1,..,n

= Data (Xy, ¥y)5 ey (Xns Uy)
= (the output guides the learning process as a ‘supervisor)

" Goal: Fit a model that relates the response to the predictors
= Prediction: Aims of accurately predicting the response for future observations

= |nference: Aims to better understanding the relationship between the
response and the predictors

Supervised learning approaches fits a model that related the response to the predictors Training Examples
Supervised learning approaches are used in classification algorithms such as SVMs (Xl, yl), ceey (XN, yN)
Supervised learning works with data = [input, correct output]

(historical records, groundtruth data, examples)

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 30/50

Feasibility of Learning from Data — Formalization

= Theoretical framework underlying practical learning algorithms

= E.g. Support Vector Machines (SVMs)
= Best understood for ‘Supervised Learning’
= Valid for bascially all machine learning algorithms

= Theoretical background used to solve ‘A learning problem’
* |nferring one ‘target function’ that maps

between input and output

= Learned function can be used to
predict output from future input
(fitting existing data is not enough)

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization

Unknown Target Function

f: X—=Y

(ideal function)

31/50

Summary Terminologies & Importance of Theory of Generalization

= Target Function
= |deal function that ‘explains’ the data we want to learn

= Labelled Dataset (samples)
= ‘in-sample’ data given to us:

= L earning vs. Memorizing
= The goal is to create a system that works well ‘out of sample’
= |n other words we want to classify ‘future data‘ (ouf of sample) correct

= Dataset Part One: Training set
= Used for training a machine learning algorithms
= Result after using a training set: a trained system

= Dataset Part Two: Test set
= Used for testing whether the trained system might work well
= Result after using a test set: accuracy of the trained model

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 32/50

Unknown Target Function

f: X =Y

i

(ideal function)

<_____..___-

Training Examples

(x17y1)’ ot (XNJ yN)

(historical records, groundtruth data, examples)

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization

Elements we
not exactly
(need to) know

Elements we
must and/or
should have and
that might raise
huge demands
for storage

33/50

Mathematical Building Blocks (1) — Our Linear Example

Unknown Target Function 1, Some pattern eXiStS
f: X =Y)
(dea Tohetiom 2. No exact mathematical

formula (i.e. target function)
3. Data exists

v

Training Examples
(X17 yl)7 Y (XN7 yN)

(historical records, groundtruth data, examples)

(if we would know the exact target function we dont need
machine learning, it would not make sense)

(decision boundaries depending on f) d

Iris-virginica if Z w;xz; > threshold

=1 (w; and threshold are

still unknown to us)

d
Iris-setosa if Z w;x; < threshold
i=1

d (we search a
h(x) = sign E w.z, | — threshold |;h € H functionsimiliar -
1 o like a target function)
1=

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 34 /50

Feasibility of Learning — Hypothesis Set & Final Hypothesis

" The ‘ideal function” will remain unknown in learning Unknown Target Function
f: X—=>Y

= |mpossible to know and learn from data
= |f known a straightforward implementation would be better than learning
» E.g. hidden features/attributes of data not known or not part of data

= But ‘(function) approximation’ of the target function is possible
= Use training examples to learn and approximate it
= Hypothesis set 7{ consists of m different hypothesis (candidate functions)

’]L[— {hla e hm}; ‘select one function’ qg: X =Y

that best approximates

Hypothesis Set

W ey | Y | T

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 35 /50

Unknown Target Function Elements we

not exactly
f X =Y (need to) know
(ideal function)
i
1
1
1
1
1
1
\:/ Elements we
.. must and/or
Training Examples should have and
X cees | X that might raise
(17y1): 7(NJyN) huge demands
(historical records, groundtruth data, examples) for storage

Final Hypothesis

g~ f

Hvpothesis Set

H=1{h}; geH

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 36 /50

Mathematical Building Blocks (2) — Our Linear Example

(decision boundaries depending on f)

H = {h1, .., hn};

(we search a function similiar
like a target function)

d
h(x) = sign ((Z uxl) — th'r'eshold) sheH

Final Hypothesis

g~ f

d
h(x) = sign ((Z w, T,) — th'r'eshold) ;heH

=1

(activation
function)

input nodes t=04

Hvpothesis Set

H = {h}, geH (trained perceptron model

and our selected final hypothesis)

(Perceptron model — linear model)

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 37/50

The Learning Model: Hypothesis Set & Learning Algorithm

= The solution tools — the learning model:

1. Hypothesis set H{ - a set of candidate formulas /models

2. Learning Algorithm _4 - ‘train a system’ with known algorithms

Training Examples

(X0, 91)s s (X Uy)

Y

Learning Algorithm (‘train a system’)

Final Hypothesis

N

Hypothesis Set

H=A{h};, geH

‘solution tools’

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization

A4

g~ f

= Qur Linear Example

1.
2.

Perceptron Model

Perceptron Learning
Algorithm (PLA)

38 /50

Unknown Target Function Elements we

not exactly
f X =Y (need to) know
(ideal f

i

nction)

<________-—

Elements we

.. must and/or
Training Examples should have and
X s | X that might raise

(17y1)a :(N’yN) huge demands
(historical records, gropndtruth data, examples) S

Learning Algorithm (‘train a system’) Final Hypothesis

g~ f

Hvpothesis Set

H=A_{h}; geH

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 39 /50

Mathematical Building Blocks (3) — Our Linear Example

A 123 y
Unknown Target Function 1 T (XN yl)? ey (XN’ yN)
fr XY 2 1011 (training data)
(ideal function) 3 1101
! 4 1111
i 5 00 1-1 ¢
1 3 P . ey
i B o1 0q SO 2(1,1, threshold
-
\l, 7 0111 o
Training E : N v xa (training phase;
rainin Xamples - .
geme Find w, and threshold
(%15 41)s s (X Yy) (algorithm uses that fit the data)
(historical records, grolindtruth data, examples) training dataset)
output
X, 0.3 node
v
Learning Algorithm (‘train a system?) Final Hypothesis
g g=f Y
A .)
(Perceptron|Learning Algorithm) .
(activation
function)

input nodes t=04
Hypothesis Set

H = {h}, geH (trained perceptron model

and our selected final hypothesis)

(Perceptron model — linear model)

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 40 /50

{

Different Models — Hypothesis Set & Unlimited ‘Degrees of Freedom

Hypothesis Set

H=A{h}; geH 9 ‘o] o .
H = {hl,...,hm}; S a9 ' ° 4 .

(all candidate functions
derived from models
and their parameters)

(e.g. support vector machine model)

output

xl
= Choosing from various model approaches h,, X, v
..., h, is a different hypothesis]’LQ _
= Additionally a change in model parameters of X, (activation
h,, ..., h,, means a different hypothesis too inputnodes Xo(bias) "

(representing the threshold)

(e.g. linear perceptron model)
‘select one function’

that best approximates

Final Hypothesis h
g~ f m

(e.g. artificial neural network model)

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization

41 /50

MNIST Data — Testing on Training Dataset — Results & Discussion

¢ . . . 10112/60000
" Memorizing vs. Generalization g
- How much we got? 15840/60000
. 17280/60000
= \WWe memorize the data o sa000
and created a model from it 2oaare0000
% 24512/60000
|
Ng unseen datz?\ us‘ed 25952160000
this no generalization! SRR

31712/60000
33152/60000
34592/60000
36032/60000
37472/60000
38912/60000
40352/60000
41792/60000
43232/60000
44672/60000
46080/60000
47520/60000
48768/60000
50208/60000
51648/60000
53088/60000
54528/60000
55968/60000
57408/60000
58848/60000
60000/60000

Jsing TensorFlow backend.
‘est score: 0.035654142725043254
‘est accuracy: 0.9916

Exercises — Train Perceptron on Testing Dataset and Test on Training Dataset

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 43 /50

Exercises — Train on Testing Dataset & Test on Training Dataset & Increase Epochs

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 44 / 50

[Video] Neural Networks Summary

_ Connection
~ Weight

[7] YouTube Video, Neural Networks — A Simple Explanation

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 45 / 50

Lecture Bibliography

O
O 0

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 46 / 50

Lecture Bibliography

= [1] Species Iris Group of North America Database, Online:
http://www.signa.org

= [2] Cheng, A.C, Lin, C.H., Juan, D.C,, InstaNAS: Instance-aware Neural Architecture Search, Online:
https://arxiv.org/abs/1811.10201

= [3] Tensorflow, Online:
https://www.tensorflow.org/

= [4] Keras Python Deep Learning Library, Online:
https://keras.io/

= [5] Jupyter Web Page, Online:
https://jupyter.org/

= [6] Big Data Tips, ‘Gradient Descent’, Online:
http://www.big-data.tips/gradient-descent

= [7] YouTube Video, ‘Neural Networks, A Simple Explanation’, Online:
http://www.youtube.com/watch?v=gcK 5x2KsLA

= [8] YouTube Video, The Linear model with Multiple Inputs and Multiple Outputs Detail Explanation’, Online:
https://www.youtube.com/watch?v=zZg59p0sGVY

= [9] Scikit-Learn, Online:
https://scikit-learn.org

= [10] M.Goetz, M. Riedel et al.,"HPDBSCAN — Highly Parallel DBSCAN’, Proceedings of MLHPC Workshop at Supercomputing 2015, Online:
https://www.researchgate.net/publication/301463871 HPDBSCAN highly parallel DBSCAN

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 47 / 50

Acknowledgements

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 48 / 50

Acknowledgements — High Productivity Data Processing Research Group

e
0

g bl Morris Riedel @MorrisRiedel - Feb 10 v
[4 Enjoyin tion' to celebrate our

askoli_Islands & @fzj jsc
modular supercomputing

inished PHD
in 2019
PD Dr. Senior PhD Senior PhD PhD Student PhD Student PhD Student
G. Cavallaro Student A.S. Memon Student M.S. Memon E. Erlingsson S. Bakarat R. Sedona

Dr. M. Goetz MSc M. MSc MSc MSc Student This research group has received funding
(now KIT) Richerzhagen P. Glock C. Bodenstein G.S. Gudmundsson from the European Union's
. .. _ (La ndsverkjun) Horizon 2020 research and
(now other leISIOh) (now INM 1) (now innovation programme under
Soccerwatch.tv) grant agreement No 763558

(DEEP-EST EU Project)

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization 49 /50

=
£ S new
measurement F @ funding

services Policy-based “=

concepts

forms cross-disciplinary resources E

year, Computational &

Cross-Disciplinary

formats.

=
=
=]
E
RS
_g
2
o

SMAQ international
References

analysisoie”

use

7 computatlonal .

DLCLs Understandmg SthGtUI’BS
any Simulation

Prowde NAsﬁ Energy systems

Lecture 4 — Supervised Learning — Multi-Class Classification & Generalization

3 d:§ access & = hundreds "' Services &
Technologies Earth i B3 Structure @ £
_%“ directory = 8 project General 3
day & Health @
a =)
=]
[

Eu R methods=

Science ;i

. brain increasing
databasesd a

est"é"é“é““f“éhf
“research o8 SCIenceHPc :

System Climate modelling =5 Hardware

MapReduce

device analysis

Iaﬂons§

W
frest
o
@
=
(5]

i EIJ external

alt

Summar
GI'IS
ervlc

=

Juelich %

System
compute D Landscape

a.-

network

8
Cent cllmate Computer expertise E E§
Computlﬂg ‘.‘.h disciplines rpgylts E_ gli Enable E
blg nodesa. ‘€ Enwronmefn]t 3 rh;loc::ellmg tb
nter ey scientific importan "
ce te S E storage ... Infrastructure i

ENES technologies

pag IPCC

EunATprocessmgmm]

computing vsins"F
msupercomputlng Work |mages
¢ S o Scientific :

1B

opean

i % often
§ performance
s datasets«

en

b

manag

50 /50

