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Outline of the Course

. Parallel & Scalable Machine Learning driven by HPC
. Introduction to Machine Learning Fundamentals

. Introduction to Machine Learning Fundamentals

. Feed Forward Neural Networks

. Feed Forward Neural Networks

. Validation and Regularization

. Validation and Regularization

. Data Preparation and Performance Evaluation
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. Data Preparation and Performance Evaluation
10. Theory of Generalization

11. Unsupervised Clustering and Applications
12. Unsupervised Clustering and Applications

13. Deep Learning Introduction
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Practical Lectures




Outline

Introduction
= (Classical Design Loop for Machine Learning
= Data Collection, Features, Models, Training and Performances
Data Pre-Processing
= Mean Subtraction and Normalization
=  Feature Extraction and Hughes Phenomenon
"  Principal Component Analysis
Remote Sensing
= (Classification of Satellite Images
= Hyperspectral images
= Spectral and Spatial Information
Learning with Limited Training Data
= Challenges of Generalization
= Data Augmentation
Performance Evaluation
* Training, Validation and Test Sets
=  Confusion Matrix and Metrics
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Introduction
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Classical Design Loop for Machine Learning

= Data collection

= How to estimate when the amount of data collected is adequately large and

representative (i.e., set of samples to train and test the classifier?

= Features choice
= Depends on the properties of the problem domain

=  Features should be:
= Simple to extract

= |nsensitive to noise
= Discriminative of patterns within different classes
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Classical Design Loop for Machine Learning

=  Model choice
= QObjective: map between low level features and high level information

» Many different approaches for modeling/parametrizing this mapping
= The choice of the method is not always rational

= Need to take into account the memory required, scalability of training data, ease of
implementation and hyper parameter tuning

= A good approach is to test several models
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Classical Design Loop for Machine Learning

Training

= Training set must be representative

* |mportance of cross validation / separate datasets

Evaluation

= Measure the error rate (or performance)
» Test different set of features/models to compare performance

Computational Complexity

= What is the trade off between computational ease and performance?

= How an algorithm scales as a function of the number of features or

categories?
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Pre-Processing
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Setting up the Data

= Mean Subtraction
= Subtract the mean across every individual feature in the data
= Geometric interpretation: center the data cloud around the origin of every dimension
=  With images: subtract a single value from all pixels (separately across the channels)

= Normalization
= Normalize the data dimensions so that they are of approximately the same scale
= One way: divide each dimension by its standard deviation once it has been zero-centered
= Another way: scale the min and max along [-1,+1]
= Apply this if the different input features have different scales (or units)
=  With images: relative scales of pixels are already approximately equal (8bits)

original data zero-centered data normalized data

10l
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Feature Extraction

Main motivation: get out most of the data

For classification task:

find a space where samples from different
classes are well separable

Objectives:

= Reduce computational load of the classifier
" |ncrease data consistency

spatial, multisource, ...
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Input Space

Feature Space

[2] Aju D. and Rajkumar Rajasekaran

Incorporate different sources of information into a feature vector: spectral,



Why Dimensionality Reduction

= High number of correlated features leads to
= Collinearity: some of the independent variables are highly correlated

= Qverfitting: model too close to a particular training set (poor generalization)

= Hughes phenomenon: increasing the dimensionality without increasing the number
of training samples results in a decrease in classifier performance

[3] Curse of dimensionality

Classifier performance

o

S —
0 Dimensionality (number of features)

Optimal number of features

= Most of the spectral feature extractors are based on multivariate analysis:
= “project data onto a subspace that maximize explained variance, minimize
correlation, minimize error, etc.”
= Linear methods are simple and intuitive, yet often not appropriate
= Nonlinear methods give improved expressive power



Principal Component Analysis (PCA)

= Objective: identify patterns in data by detecting the correlation between variables

* Find the directions of maximum variance in high-dimensional data

original data decorrelated data

[4] Python Data Science Handbook

[1] Common data reprocessing

= |f a strong correlation between variables exists -> reduce the dimensionality

= Project onto a smaller dimensional subspace while retaining most of the
information
= Projections that maximize the variance of the data
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Remote Sensing
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Overview of Remote Sensing

Materials reflect, absorb, and emit electromagnetic radiation in a different way
depending of their molecular composition and shape

Remote sensing exploits this physical fact and deals with the acquisition of information
about a scene

Cloud
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Scattered Radiation
Direct radiation /

Atmospheric .’-v L B - ) - Scattered radiation

emission

% Thermal emission
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[5] Remote Sensing
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Exploitation of Pattern Recognition Systems

= Pattern recognition is the science of making inferences from perceptual data, using tools from
statistics, probability, computational geometry, machine (deep) learning, signal processing, and
algorithm design
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Classification of Satellite Images

e Acquired with Remote Sensing systems
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Band 2

Band 1
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Satellite image data

\_; Each pixel has a particular

brightness value in each band
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Classification

* E.g., Classification of urban areas

water
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[ Buildings

Bare Soil

Lecture 8 - Data Preparation and Performance Evaluation

Thematic classes:

I Blocks

I Light Train [ Vegetation Bl Trees

Il Soil

[ Roads

B Tower

Generation of thematic maps




Extracting Features from Remote Sensing Images

= |tis essential for:
= Compress information for storage/transmission
= Reduce (spatial and spectral) redundancy
= Make image processing algorithms more robust (noise, dimension)
= Visualize data characteristics
= Understand the underlying physical relations

= Hyperspectral images o

r { \ Green vegetation

= Allow finer material characterization

= Different materials produce distinct
electromagnetic radiation spectra

Reflectance

= The spectral information contained in a
hyperspectral image pixel can indicate the
various materials present in a scene

Wavelength (um)

[6] Hyperspectral images
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Example of PCA Applied on a Hyperspectral Image

= Nearby bands tend to be correlated (correlation means redundancy - images “look alike”)

= Theoretically n bands = n dimensional data

I”

= The “actua

PCA finds the linear subspace that shows the largest variances
(i.e., eigenvalue decomposition of the covariance matrix)

[6] Hyperspectral images

[7] H. Hotelling

dimension required to represent data with negligible information loss is lower
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Practicals with PCA and Hyperspectral images in Lecture 9
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Extract Spectral and Spatial Features

1. Spectral:
=  Physically-based spectral features
= Statistical multivariate methods:
linear (PCA) and nonlinear

us
2. Spatial/contextual

= Standard image processing descriptors
= Advanced computer vision descriptors

3. Spatio-spectral
= Extract features from spectral patches or
regions

[6] Hyperspectral images
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Complexity of Spatial Information

= Very High Spatial Resolution images: huge amount of details

e Sub-metric resolution
e Allows for accurate analysis

e Objects with different scales and shapes
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Spatial Information (1)

= Aslong as the pixel sizes remained similar to the objects of interest

= Most classifier employed the pixel as the basic unit

I Roof I Grass Il Tree [C] Bare Soil Il Soil Bl Road Bl Water

= During the 1980s and 1990s, pixel-wise classification methods:

= assumed that each pixel is pure and typically labeled as a single land cover class
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Spatial Information (2)

The scene complexity and the spatial resolution determines the number of mixed pixels

The spectral unmixing problem:

identify the pure materials (endmembers)

estimate their corresponding proportions (abundances)
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mixed spectral signature

mixed pixel

Two models to analyze the mixed pixel
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[8] A. Plaza, et al.



Spatial Information (3)

= When spatial resolution increases, structures are larger than the pixel size
= The correlation between neighboring pixels increases
= adjacent pixels of a roof pixel belong to the same class with a high probability

= structures can be represented as regions of spatially connected pixels

The presence of mixed pixels can not be avoided
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Spatial Information (4)

* The separability on the different classes in the spectral domain is reduced
= spectral variability within-class increases (caused by shadows, sun angle, etc.)

= spectral variability between different classes decreases

= Limited spectral resolution (technological constraints)

A pixel is a small part roof

= Spatial contextual classifiers can exploit the correlation of pixels within a subset domain



Normalized Difference Vegetation Index (NDVI)

= Create additional relevant features from the existing raw features in the data

* |ncrease the predictive power of the classifier

NDVI = (NIR=R) / (NIR + R)

NDVI 1928
r— HicH : 0.82
NIR B ow: 067
B

G
R

PREPROCESSING

[9] NDVI

Dead Leaf Stressed Leaf Healthy Leaf
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Learning with Limited Training Data
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Limited Remote Sensing Training Data

= RS applications have massive amounts of temporal and spatial data (e.g., Sentinel 2)
= But not enough labeled training samples, which usually don’t fully represent:

= Seasonal variations
= QObject variation (e.g., plants, crops, etc.)

= Most online hyperspectral data sets have little-to-no variety

[6] Hyperspectral images

= DL systems with many parameters require large amounts of training data
= Else they can easily overtrain and not generalize well

= DL systems in CV use very large training sets
e.g., millions or billions of faces in different illuminations, poses, inner class variations, etc.
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Possible Solutions

" Possible approaches to mitigate small training samples:

1. Data augmentation
= Affine transformations, rotations, small patch removal, etc.

2. Transfer learning
= Train on other imagery to obtain low-level to mid-level features

3. Use ancillary data
= Other sensor modalities (e.g., LIDAR, SAR, etc.)

4. Unsupervised training
* Training labels not required



Data Augmentation

Train with additional synthetically modified data
Techniques to artificially increase the size of the training set

Make minor changes such as flips, translations and rotations to the existing dataset

Employed to counteract overfitting

[11] Data Augmentation

“A poorly trained neural network would think that these three tennis balls, are distinct, unique images”



Invariance

= Ability to recognize an object as an object, even when its appearance varies in some way

= |t allows to abstract an object's identity from the specifics of the visual input

= E.g., relative positions of the viewer/camera and the object.

= Well-trained classifiers can be invariant to translation, viewpoint, size or illumination

Translation Invariance

Size Invariance

Rotation/Viewpoint Invariance

” Illumination Invariance

[12] Invariance property
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Popular Augmentation Techniques

Flip horizontally and vertically
Rotate
Scaled outward or inward

Crop: random sample a section

Translate: moving the image along the X or Y direction

Add noise

Data augmentation is more challenging for remote sensing

= |mages exist in a variety of conditions (e.g., different seasons)

= They cannot be accounted for by the above sim
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[11] Data Augmentation




Transfer the Knowledge

Direct solution: rebuild from scratch the predictive model using new training samples
However it is preferable to reduce the need for and effort in recollecting new samples
Other solutions: transfer learning, domain adaptation and active learning approaches

Exploit the knowledge acquired by the available reference samples for classifying new

images acquired over different geographical locations at diverse times with different sensors

MODEL A [Knowledge } > MODELB

Source Task/Domain Target Task/Domain B

[13] Domain Adaptation



Performance Evaluation
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How to Assess the Classifier Performance?

= |f annotated samples are available, the classifier parameters are learned in a supervised way

= How to estimate the generalization error: split the groundtruth into three disjoint sets

ANNOTATED SAMPLES
(GROUDTRUTH)

4 A 4

I
I

I
I
| TRAINING PHASE . MODEL | TEST PHASE ! R
: (learn) (parameters) (performance) |

I
| CLASSIFIER |

Performances: usually more influenced by the amount and quality of the training
samples (i.e., sampling design) rather than the classifier/model complexity
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Three Disjoint Sets

* Training set: used to train the model

How do we ensure that the model is not overfitting to the data in the training set?

= Validation set: used to validate the model during training

= |ts classification is based only on the model that is learnt from the training set

= The model weights are updated based on this set

= Help to adjust the hyperparameters (e.g., number of hidden layers, learning rate, etc..)
|

Test set: used to test the model after it has been trained
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Choose Parameters for a Classifier?

= Validation: if a lot of training data, we can use X% for training and Y% for validation
= Test on different parameters
= Retain parameters that give the highest accuracy on validation set

= |f limited training data = cross-validation
= Different types
= Popular choice: k-fold cross-validation
= Randomly partition the training data into k equal sized subsets
= k times: one of k subsets is used for validation, and the rest of data are used
for training



Sampling Strategies

= Random sampling:
= Randomly select training samples within the area of each class
= Often used, but bad idea if generalization required

= Patch sampling:
= Image is divided into blocks, test samples are from blocks that haven’t been used
for training

= Cluster sampling:
*= Train on one area, test on another area

n':":'n u':":'n O o o o

a” 0 af” T o o

Random sampling

Stratified
random sampling
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sampling

Cluster sampling




How to Compare the Obtained Results with the Test Data?

= Photo interpretation
= E.g., visual comparison of classification maps (it can idenfifies weaknesses of the
classifier)

Estimated class posterior [14] R. Hiinsch, et al.
Blue = low probability; Red = high probability

= Metrics
Accuracy measures: overall, class-specific, average, kappa coefficient, etc.
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Confusion Matrix

Confusion matrix:
= |t shows where the system mislabels one class as another

= Each column represents the instances in a predicted class
=  Each row represents the instances in an actual class

Percentage Classification data
Reference data (oN Cs Ca Row total | Class-specific accuracy
cy Cus o cis || TFou “u
) Zf( Cui
C2 C21 C22 C23 Zf( Ca;i (:(22
Zi Cai
Cs Ca1 o Cs || TFCs Cs
) Z,f( Csi
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User® Cu Cu Csz
ser’s accuracy e e 7
Zi Ci Ze‘ Ciz Zz‘ Cis

C; :theclassi
Ci;: number of pixels classified to the class j and referenced as the class i



Accuracies Measures (1)

pixels (K is the number of classes)

for a given class

all the classes:

. ZF C:'f
Overall Accuracy (OA): percentage of correctly classified OA = e
Zg Cij
. . C."f
Class Accuracy (CA): percentage of correctly classified pixels CA = —x
A A AA): fcl i ies f > CA;
verage Accuracy (AA): mean of class-specific accuracies for AN — 2 j
K
Percentage Classification data
Reference data [oN Cs Cy Row total | Class-specific accuracy
K Cus
Ci Cu Cha Cia > Cu qu O
K Caz
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s o o Cis | K Cu ‘Z?Zsl-
Column total Z:( Cit Zf( Cia Z:( Cis N
, Cia Cn Caa
User’s accuracy 7 7 7
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Accuracies Measures (2)

= Kappa Coefficient (k): percentage of agreement

= Correctly classified pixels

= Corrected by the number of agreements that would be expected purely by chance

2
R = ]_—Pe
P, = OA

1 K
P, = mZ_C,-.c.,-

K K
C. = ZCU C; :ZC:“
J J
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