Parallel & Scalable Machine Learning
Introduction to Machine Learning Algorithms

Dr. – Ing. Morris Riedel
Adjunct Associated Professor
School of Engineering and Natural Sciences, University of Iceland
Research Group Leader, Juelich Supercomputing Centre, Germany

LECTURE 2

DEEP Projects and Parallel Computing Basics

March 6th, 2018
JSC, Germany
Review of Lecture 1

- Machine Learning Prerequisites
 1. Some pattern exists
 2. No exact mathematical formula
 3. Data exists
- Linearly separable dataset Iris
 - Perceptron Model as hypothesis (simplest linear learning model, linearity in learned weights w_i)
 - Understood Perceptron Learning Algorithm (PLA)
- Learning Approaches
 - Supervised Learning
 - Unsupervised Learning
 - Reinforcement Learning
Outline
Outline of the Course

1. Introduction to Machine Learning Fundamentals
2. **DEEP Projects and Parallel Computing Basics**
3. Unsupervised Clustering and Applications
4. Unsupervised Clustering Challenges & Solutions
5. Supervised Classification and Learning Theory Basics
6. Classification Applications, Challenges, and Solutions
7. Support Vector Machines and Kernel Methods
8. Practicals with SVMs
9. Validation and Regularization Techniques
10. Practicals with Validation and Regularization
11. Parallelization Benefits
12. Cross-Validation Practicals

Lecture 2 – DEEP Projects and Parallel Computing Basics
Outline

- **DEEP Projects**
 - Understanding High Performance Computing
 - Persistent pan-European Supercomputing Infrastructure PRACE
 - DEEP Projects & JSC Dual Concept
 - Application Co-Design & Machine Learning
 - Modular Supercomputing Architecture (MSA)

- **Parallel Computing Basics**
 - Supercomputers & Parallel Computing
 - Scheduling Principles
 - Job Scripts & Reservations
 - HPC Module Environment
 - JURECA HPC System
DEEP Projects
Understanding High Performance Computing

- High Performance Computing (HPC) is based on computing resources that enable the efficient use of parallel computing techniques through specific support with dedicated hardware such as high performance cpu/core interconnections.

- High Throughput Computing (HTC) is based on commonly available computing resources such as commodity PCs and small clusters that enable the execution of ‘farming jobs’ without providing a high performance interconnection between the cpu/cores.

focus in the next slides
Partnership for Advanced Computing in Europe (PRACE)

- **Basic Facts**
 - HPC-driven infrastructure
 - An international not-for-profit association under Belgien law (with its seat in Brussels)
 - Has 25 members and 2 observers
 - Governed by the PRACE Council in which each member has a seat
 - Daily management of the association is delegated to the Board of Directors
Mission: enabling world-class science through large scale simulations

Offering: HPC resources on leading edge capability systems

Resource award: through a single and fair pan-European peer review process for open research

[1] PRACE
PRACE European vs. Regional Systems

Tier-0: European systems operated by HM
Tier-1: National systems operated by PRACE partners
Tier-2: Regional systems operated by individual research institutions

[1] PRACE
Lecture 2 – DEEP Projects and Parallel Computing Basics
[Video] JUQUEEN – Supercomputer Upgrade Example

Upgrade JUGENE to JUQUEEN
JSC Dual Approach

IBM Power 4+ JUMP
9 TFlops/s

IBM Power 6 JUMP
9 TFlops/s

IBM Blue Gene/L JUBL
45 TFlops/s

IBM Blue Gene/P JUGENE
1 PFlops/s

IBM Blue Gene/Q JUQUEEN
5.9 PFlops/s

JUROPA
200 TFlops/s

HPC-FF
100 TFlops/s

File Server

GPFS Lustre

Hierarchical Storage Server

General-Purpose Cluster

Highly Scalable System
DEEP Projects & Partners

- DEEP
 - Dynamic Exascale Entry Platform
- 3 EU Exascale projects
 - DEEP
 - DEEP-ER
 - DEEP-EST
- 27 partners
 - Coordinated by JSC
- EU-funding: 30 M€
 - JSC-part > 5,3 M€
- Nov 2011 – Jun 2020

[6] DEEP-EST EU Project
Deep Projects – Application Co-Design → Heterogeneity

[Image of various software projects]

[6] DEEP-EST EU Project
Homogenous Cluster

Network

CN

CN

CN

CN

CN

[6] DEEP-EST EU Project
Heterogenous Cluster

Network
Cluster – Booster Concept

Cluster

Network

Booster

[6] DEEP-EST EU Project
Application Co-Design

- **Full user flexibility** – many possible use modes
- **Efficient resources use** – only used nodes are blocked

Application 1

Application 2

Application 3

Cluster

Booster

[6] DEEP-EST EU Project
Modular Supercomputing @ JSC

IBM Power 6
JUMP, 9 TFlop/s

IBM Power 4+
JUMP, 9 TFlop/s

IBM Blue Gene/L
JUBL, 45 TFlop/s

IBM Blue Gene/P
JUGENE, 1 PFlop/s

IBM Blue Gene/Q
JUQUEEN, 5.9 PFlop/s

JUST storage

JUROPA
200 TFlop/s

HPC-FF
100 TFlop/s

JURECA (2015)
2.2 PFlop/s

JURECA Booster (2017)
5 PFlop/s

[6] DEEP-EST EU Project
JURECA HPC System

- T-Platforms V210 blade server solution
 - Dual-socket Intel Xeon Haswell CPUs
- Mellanox InfiniBand EDR network
- Peak: 1.8 PF (CPUs) + 0.4 PF (GPUs)
- 281 TiB main memory
- 100 GBps storage bandwidth

- Dell PowerEdge C6320P solution
 - Intel Xeon Phi “Knights Landing” 7250-F
- Intel OPA network
- Peak: 5 PF
- 157 TiB main memory + 26 TiB MCDRAM
- 200 GBps storage BW
Roadmap & Machine Learning

Lecture 2 – DEEP Projects and Parallel Computing Basics

[6] DEEP-EST EU Project
IBM Power 4+
JUMP (2004), 9 TFlop/s

IBM Blue Gene/L
JUBL, 45 TFlop/s

IBM Blue Gene/P
JUGENE, 1 PFlop/s

IBM Blue Gene/Q
JUQUEEN (2012)
5.9 PFlop/s

IBM Power 6
JUMP, 9 TFlop/s

JUROPA
200 TFlop/s
HPC-FF
100 TFlop/s

JUWELS Scalable
Module (2019/20)
50+ PFlop/s

JUWELS Cluster Module (2018)
12 PFlop/s

JUWELS Cluster (2015)
2.2 PFlop/s

JURECA Cluster (2015)
2.2 PFlop/s

JURECA Booster (2017)
5 PFlop/s

IBM Power 4+
JUMP (2004), 9 TFlop/s

IBM Blue Gene/L
JUBL, 45 TFlop/s

IBM Blue Gene/P
JUGENE, 1 PFlop/s

IBM Blue Gene/Q
JUQUEEN (2012)
5.9 PFlop/s

IBM Power 6
JUMP, 9 TFlop/s

JUROPA
200 TFlop/s
HPC-FF
100 TFlop/s

JUWELS Scalable
Module (2019/20)
50+ PFlop/s

JUWELS Cluster Module (2018)
12 PFlop/s

JUWELS Cluster (2015)
2.2 PFlop/s

JURECA Cluster (2015)
2.2 PFlop/s

JURECA Booster (2017)
5 PFlop/s

Hierarchical Storage Server Module
Modular Supercomputer

Proof of Concept in European DEEP Project

General Purpose Cluster
Highly scalable
[Video] PRACE – Introduction to Supercomputing

Parallel Computing Basics
Parallel Computing

- All modern supercomputers depend heavily on parallelism
 - We speak of parallel computing whenever a number of ‘compute elements’ (e.g. cores) solve a problem in a cooperative way

- Often known as ‘parallel processing’ of some problem space
 - Tackle problems in parallel to enable the ‘best performance’ possible

- ‘The measure of speed’ in High Performance Computing matters
 - Common measure for parallel computers established by TOP500 list
 - Based on benchmark for ranking the best 500 computers worldwide

network interconnection important

[4] Introduction to High Performance Computing for Scientists and Engineers

[5] TOP 500 supercomputing sites
TOP 500 List (November 2017)

- **Impact of the TOP500 list is compromised through its own success**: especially the 50 top HPC system are often designed primarily to reach a great LINPACK performance benchmark today.
- The LINPACK performance benchmark not fully reflects the broad range of applications in HPC today.

Table: TOP 500 supercomputing sites

<table>
<thead>
<tr>
<th>Rank</th>
<th>System</th>
<th>Core</th>
<th>Rmax (TFlop/s)</th>
<th>Rpeak (TFlop/s)</th>
<th>Power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Summit</td>
<td>10,649,600</td>
<td>9,014.6</td>
<td>125,435.9</td>
<td>13.371</td>
</tr>
<tr>
<td>2</td>
<td>Tianhe-2</td>
<td>3,120,000</td>
<td>6,882.7</td>
<td>54,922.4</td>
<td>17.808</td>
</tr>
<tr>
<td>3</td>
<td>Piz Daint</td>
<td>561,760</td>
<td>19,590.0</td>
<td>25,026.3</td>
<td>2.723</td>
</tr>
<tr>
<td>4</td>
<td>Gersprenz</td>
<td>19,843,000</td>
<td>19,135.8</td>
<td>28,192.0</td>
<td>1.330</td>
</tr>
<tr>
<td>5</td>
<td>Titan</td>
<td>560,640</td>
<td>17,590.0</td>
<td>27,112.3</td>
<td>3.039</td>
</tr>
<tr>
<td>6</td>
<td>Sequoia</td>
<td>1,572,884</td>
<td>17,173.2</td>
<td>20,122.7</td>
<td>7.890</td>
</tr>
<tr>
<td>7</td>
<td>Trinity</td>
<td>979,468</td>
<td>14,127.8</td>
<td>43,902.6</td>
<td>3.844</td>
</tr>
<tr>
<td>8</td>
<td>Cori</td>
<td>622,336</td>
<td>14,014.7</td>
<td>27,000.7</td>
<td>3.939</td>
</tr>
<tr>
<td>9</td>
<td>Oakgrid-PACS</td>
<td>556,104</td>
<td>13,524.6</td>
<td>24,912.3</td>
<td>2.719</td>
</tr>
<tr>
<td>10</td>
<td>K computer</td>
<td>705,024</td>
<td>10,510.0</td>
<td>11,200.4</td>
<td>12.660</td>
</tr>
</tbody>
</table>
Tutorial Machine: JSC JURECA System – CLUSTER Module

- **Characteristics**
 - Login nodes with 256 GB memory per node
 - 45,216 CPU cores
 - 1.8 (CPU) + 0.44 (GPU) Petaflop/s peak performance
 - Two Intel Xeon E5-2680 v3 Haswell CPUs per node: 2 x 12 cores, 2.5 GhZ
 - 75 compute nodes equipped with two NVIDIA K80 GPUs (2 x 4992 CUDA cores)

- **Architecture & Network**
 - Based on T-Platforms V-class server architecture
 - Mellanox EDR InfiniBand high-speed network with non-blocking fat tree topology
 - 100 GiB per second storage connection to JUST

- **Use our ssh keys to get an access and use reservation**
- **Put the private key into your ./ssh directory (UNIX)**
- **Use the private key with your putty tool (Windows)**
Exercise – Login to JURECA with TrainXYZ Accounts

- train004 – train050 are training accounts that are used in the tutorial for JURECA using SSH Keys
- Every participant needs to pick one trainXYZ account from the list
- Download keys: https://fz-juelich.sciebo.de/index.php/s/IR9u8LPQjNXIV37/authenticate
- Password: JSC_ml_2018
- UNIX: chmod 600 for changing the rights to the key for the ssh client
JURECA System – SSH Login

- Use your account train004 - train050
- Windows: use putty
- UNIX: ssh trainXYZ@jureca.fz-juelich.de

Example

```bash
adminuser@linux-Bdjd:~$ ssh train001@jureca.fz-juelich.de
Warning: the ECDSA host key for 'jureca.fz-juelich.de' differs from the key for the IP address '134.94.33.9'
Offending key for IP in /home/adminuser/.ssh/known_hosts:12
Matching host key in /home/adminuser/.ssh/known_hosts:19
Are you sure you want to continue connecting (yes/no)? yes
Last login: Mon Aug 21 14:29:03 2017 from zam2036.zam.kfa-juelich.de
```

```bash
Welcome to JURECA
```

```bash
Information about the system, latest changes, user documentation and FAQs:
http://www.fz-juelich.de/ias/jsc/jureca
```

```bash
### Known Issues ###
```
```bash
An up-to-date list of known issues on the system is maintained at
http://www.fz-juelich.de/ias/jsc/jureca-known-issues
```
```bash
Open issues:
- Intel compiler error with std::valarray and
  optimized headers, added 2016-03-20
```

Remember to use your own trainXYZ account in order to login to the JURECA system
Using SSH Clients for Windows

- Example: using the Putty SSH client (other SSH tools exist, e.g. could be MoabXTerm, etc.)

Configure Keys under SSH, change username to trainXYZ, and use hostname for JURECA
Scheduling Principles – SLURM Scheduler in Tutorial

- HPC Systems are typically not used in an interactive fashion
 - Program application starts ‘processes’ on processors (‘do a job for a user’)
 - Users of HPC systems send ‘job scripts’ to schedulers to start programs
 - Scheduling enables the sharing of the HPC system with other users
 - Closely related to Operating Systems with a wide variety of algorithms

- E.g. First Come First Serve (FCFS)
 - Queues processes in the order that they arrive in the ready queue.

- E.g. Backfilling
 - Enables to maximize cluster utilization and throughput
 - Scheduler searches to find jobs that can fill gaps in the schedule
 - Smaller jobs farther back in the queue run ahead of a job waiting at the front of the queue (but this job should not be delayed by backfilling!)

- Scheduling is the method by which user processes are given access to processor time (shared)
Example: Supercomputer BlueGene/Q
ReservationName=ml-hpc-1 StartTime=2018-03-06T08:45:00
EndTime=2018-03-06T17:15:00 Duration=08:30:00
Nodes=jrc[0056-0085] NodeCnt=30 CoreCnt=720 Features=thin
PartitionName=batch Flags=
TRES=cpu=1440
Users=s.luehrs,train001,train002,train003,train004,train005,train006,train007,train008,train009,train010,train011,train012,train013,train014,train015,train016,train017,train018,train019,train020,train021,train022,train023,train024,train025,train026,train027,train028,train029,train030,train031,train032,train033,train034,train035,train036,train037,train038,train039,train040,train041,train042,train043,train044,train045,train046,train047,train048,train049,train050,mriedel
Accounts=(null) Licenses=(null) State=INACTIVE BurstBuffer=(null)
Watts=n/a

ReservationName=ml-hpc-2 StartTime=2018-03-07T08:45:00
EndTime=2018-03-07T17:15:00 Duration=08:30:00
Nodes=jrc[0056-0085] NodeCnt=30 CoreCnt=720 Features=thin
PartitionName=batch Flags=
TRES=cpu=1440
Users=mriedel,s.luehrs,train001,train002,train003,train004,train005,train006,train007,train008,train009,train010,train011,train012,train013,train014,train015,train016,train017,train018,train019,train020,train021,train022,train023,train024,train025,train026,train027,train028,train029,train030,train031,train032,train033,train034,train035,train036,train037,train038,train039,train040,train041,train042,train043,train044,train045,train046,train047,train048,train049,train050
Accounts=(null) Licenses=(null) State=INACTIVE BurstBuffer=(null)
Watts=n/a

ReservationName=ml-hpc-3 StartTime=2018-03-08T08:45:00
EndTime=2018-03-08T17:15:00 Duration=08:30:00
Nodes=jrc[0056-0090,0092-0106] NodeCnt=50 CoreCnt=1200
Features=thin PartitionName=batch Flags=
TRES=cpu=2400
Users=mriedel,s.luehrs,train001,train002,train003,train004,train005,train006,train007,train008,train009,train010,train011,train012,train013,train014,train015,train016,train017,train018,train019,train020,train021,train022,train023,train024,train025,train026,train027,train028,train029,train030,train031,train032,train033,train034,train035,train036,train037,train038,train039,train040,train041,train042,train043,train044,train045,train046,train047,train048,train049,train050
Accounts=(null) Licenses=(null) State=INACTIVE BurstBuffer=(null)
Watts=n/a
Jobscript JURECA Example & Reservation

```bash
#!/bin/bash -x
#SBATCH --nodes=2
#SBATCH --ntasks=48
#SBATCH --ntasks-per-node=24
#SBATCH --output=mpi-out.%j
#SBATCH --error=mpi-err.%j
#SBATCH --time=06:00:00
#SBATCH --partition=batch
#SBATCH --mail-user=m.riedel@fz-juelich.de
#SBATCH --mail-type=ALL
#SBATCH--job-name=train-indianpines-2-48-24
#SBATCH--reservation=ml-hpc-1

### location executable
PISVM=/homea/hpclab/train001/tools/pisvm-1.2.1/pisvm-train
#PISVM=/homeb/zam/mriedel/tools/pisvm-1.2.1jurecanew/pisvm-train

### location data
TRAINDATA=/homea/hpclab/train001/data/indianpines/indian_processed_training.el
#TRAINDATA=/homeb/zam/mriedel/bigdata/172-indianpinesrawproc/indian_processed_training.el

### submit
srun $PISVM -D -o 1024 -q 512 -c 100 -g 8 -t 2 -m 1024 -s 0 $TRAINDATA
```

- Every day the reservation string is changed on the HPC systems (below)
- Change the number of nodes and tasks to use more or less CPUs for jobs
- Use the command `sbatch <jobsript>` in order to submit parallel jobs to the supercomputer and remember your <job id> returned
- Use the command `squeue -u <userid>` in order to check the status of your parallel job

- JURECA HPC System – Reservation Monday (2018-03-06) → ml-hpc-1
- JURECA HPC System – Reservation Tuesday (2018-03-07) → ml-hpc-2
- JURECA HPC System – Reservation Wednesday (2018-03-08) → ml-hpc-3
HPC Environment – Modules

- **Module** environment tool
 - Avoids to manually setup environment information for every application
 - Simplifies shell initialization and lets users easily modify their environment

- **Module avail**
 - Lists all available modules on the HPC system (e.g. compilers, MPI, etc.)

- **Module spider**
 - Find modules in the installed set of modules and more information

- **Module load**
 - Loads particular modules into the current work environment, E.g.:
    ```
    [train001@jrl12 ~]$ module load GCC
    Due to MODULEPATH changes, the following have been reloaded:
      1) binutils/.2.29
    The following have been reloaded with a version change:
      1) GCCcore/.5.4.0 => GCCcore/.7.2.0
    [train001@jrl12 ~]$ module load ParaStationMPI/5.2.0-1
    [train001@jrl12 ~]$ module load HDF5/1.8.19
    ```
[Video] Parallel I/O with I/O Nodes

Lecture Bibliography
Lecture Bibliography (1)

- [1] Partnership for Advanced Computing in Europe (PRACE),
 Online: http://www.prace-ri.eu/
- [2] PRACE Training Portal,
 Online: http://www.training.prace-ri.eu/material/index.html
- [3] PRACE – Introduction to Supercomputing,
 Online: https://www.youtube.com/watch?v=D94FJx9vxFA
- [4] Introduction to High Performance Computing for Scientists and Engineers, Georg Hager & Gerhard Wellein,
- [5] TOP500 Supercomputing Sites,
 Online: http://www.top500.org/
- [6] DEEP-EST EU Project,
- [7] JURECA HPC System @ JSC,
 Online: http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html
- [8] Putty Tool,
 Online: http://www.putty.org/
- [9] TBD

- [10] LLView Tool,
Lecture Bibliography (2)

Slides Available at http://www.morrisriedel.de/talks