

High Performance Computing

Dr. – Ing. Morris Riedel

Adjunct Associated Professor School of Engineering and Natural Sciences, University of Iceland Research Group Leader, Juelich Supercomputing Centre, Germany

SHORT LECTURE 12

Terrestrial Systems & Climate

November 7th, 2017 Room TG-227

UNIVERSITY OF ICELAND

FACULTY OF INDUSTRIAL ENGINEERING, MECHANICAL ENGINEERING AND COMPUTER SCIENCE

Review of Lecture 11 – Scientific Visualization & Steering

Many Visualization Methods

Interactively Steer HPC Applications while executing

modified from [1] CINECA – Scientific Visualization Training [2] M. Riedel et al., computational steering, 2007

HPC-A[dvanced] Scientific Computing – Second Part

- Consists of techniques for programming large-scale HPC Systems
 - Approach: Get a broad understanding what HPC is and what can be done
 - Goal: Train general HPC techniques and bits of domain-specific applications

Outline of the Course

- 1. High Performance Computing
- 2. Parallelization Fundamentals
- 3. Parallel Programming with MPI
- 4. Advanced MPI Techniques
- 5. Parallel Algorithms & Data Structures
- 6. Parallel Programming with OpenMP
- 7. Hybrid Programming & Patterns
- 8. Debugging & Profiling Techniques
- 9. Performance Optimization & Tools
- 10. Scalable HPC Infrastructures & GPUs

- 11. Scientific Visualization & Steering
- 12. Terrestrial Systems & Climate
- 13. Systems Biology & Bioinformatics
- 14. Molecular Systems & Libraries
- 15. Computational Fluid Dynamics
- 16. Finite Elements Method
- 17. Machine Learning & Data Mining
- 18. Epilogue
- + additional practical lectures for our hands-on exercises in context

Outline

- Terrestrial Systems
 - Numerical Simulations
 - ParFlow Hydrology Model
 - CLM Land-Surface Model
 - COSMO Weather Model
 - Coupling Different Models
- Climate
 - Numerical Weather Prediction
 - Partial Differential Equations
 - WRF Model Application
 - WRF Parallel I/O & pNetCDF

 Short Lecture only shows subsets of libraries & applications in domains

- Promises from previous lecture(s):
- Lecture 2: Lecture 12 about Terrestrial Systems will provide more details on domain decomposition aspects
- Lecture 2: Lectures 12-17 will provide details on applied parallelization methods within parallel applications
- Lecture 4: Lectures 12-17 will provide parallel application examples that take advantage of the NetCDF
- Lecture 5: Lecture 12 will give in-depth details on parallel algorithms used in terrestrial systems and climate
- Lecture 5: Lectures 12-17 will provide more details on how NETCDF and HDF is used with application data
- Lecture 5: Lectures 12-17 will provide more details on complexities integrating technical & domain code
- Lecture 7: Lecture 12 will provide more HPC examples from terrestrial systems and climate simulations
- Lecture 11: Lecture 12-17 will provide scientific visualizations for different HPC application domain fields

Terrestrial Systems

Terrestrial Systems – Motivation

 Terrestrial systems represent a class of applications that perform numerical HPC simulations of variable complexity of terrestrial systems processes across different scales & regions

State changes of land surfaces & ecosystems and services provided by them have multiple socioeconomic impacts

modified from [3] SimLab Terrestrial Systems

- Selected Motivations
 - Understand global environmental change (e.g. climate) affecting terrestrial systems at all scales
 - Increase understanding of many physical processes on earth (latin terra) that are still poorly understood
 - Work towards better reproducability of models

Terrestrial Systems – Modelling Dynamical Systems

- Evolution in time (and space) is of interest
 - Behavior of a whole ecosystem in time
 - Dynamical systems:
 e.g. economic processes, movement of a fluid, ...
 - (cf. Lecture 7 simple Jacobi example & heat equation)
- How to model 'evolution' of a system
 - A dynamical system consists of its state (e.g. input data) and a some 'rules'
 - Rules determine how the dynamic system will evolve over time
 - Rules governing the evolution are 'physical laws/equations for different system elements'

[4] Introduction to SC

- In order to investigate a real system's behaviour by computing, a mathematical model is needed
- A dynamical system is some realistic system whose evolution in time is of interest

[3] SimLab Terrestrial Systems

Terrestrial Systems – Need for Numerical Methods in HPC

- Solving some mathematical problems & equations is too computational intensive

 Approximate
 Numerical methods are methods that obtain numerical approximation solutions to problems
 - Behaviour 'governed by equations' are computed
 - Nature is complex & interconnected: simplification
 - Behaviour governed by 'difference equations'
 - System state only change at discrete instants of time
 - System state 'not change in time continously'
 - Behaviour governed by 'differential equations'
 - System state evolves 'continously in time'
 - Selected 'scientific questions' for simulations
 - Under what circumstances will a system evolve into an 'equilibrium-state' (state which does not change)
 - Under what circumstances will the system evolve into a 'periodic state' (states the system return to over time)

(solutions can be computed simply by applying definitions iteratively)

[4] Introduction to SC

Terrestrial Systems – Partial Differential Equations (PDEs)

- HPC models often use toolkits (e.g. PETSc) for Partial Differential Equations (PDEs) that are differential equations that contains unknown multivariable functions and their partial derivatives
- A general method in HPC modelling use parallel PDEs tools to approximate solutions to problems

modified from [5] Wikipedia on 'Partial Differential Equation'

- HPC simulation modelling
 - PDEs enable rates of change (of continous variables)
 - PDEs used to formulate problems involving functions of several variables
 - PDEs describe a wide variety of phenomena (e.g. sound, heat, electrostatics, fluid flow, etc.)
 - PDEs model multi-dimensional dynamical systems
- Differences to 'ordinary differential equations'
 - Ordinary differential equations deal with functions of a single variable and their derivatives
 - Ordinary differential equations model one-dimensional dynamical system

Solving those equations is often too complicated computationally expensive or impossible to analytically compute driving the need for numerical approximation

^[4] Introduction to SC

Terrestrial Systems – Numerial HPC Simulations

- Numerical models & simulations
 - Investigate multiple terrestrial system processes as a whole
 - Enable sustainable management of terrestrial systems
 - Simulate complex, non-linear transport processes of energy, mass and momentum
 - Create interactions and feedback mechanisms between different compartments of the coupled geo-ecosystem (e.g. subsurface, land-surface, atmosphere, reservoirs, etc.)

[3] SimLab Terrestrial Systems

- Varying scales: multiple spatio-temporal scales and high resolutions
- Potentially long runtimes & use 'ensemble simulations'

> Lecture 13 provides more details on ensemble methods to estimate uncertainties in bio-systems

Terrestrial Systems – ParFlow Model Parallel Application (1)

- Modelling 'hydrology' processes
 - Parallel watershed flow model (ParFlow)
 - Simulate surface and subsurface fluid flow
 - Use in the assessment and management of groundwater and surface water
 - Investigate system physics and feedbacks
 - Understand interactions at a range of scales
 - Suitable for large scale & high resolution
- Parallel 'numerical' application
 - Developed over 10 years (aka stable code)
 - Offers advanced numerical solvers for massively parallel HPC systems

[7] ParFlow Web page

ParFlow enables the parallel simulation of hydrology processes with (sub-)surface fluid flows

Terrestrial Systems – ParFlow Model Parallel Application (2)

- Parallelization Techniques
 - 3D Grid domain decomposition (cf. Lecture 2)
 - 3D code (use octree-space partitioning algorithm)
 - Implements hybrid programming (cf. Lecture 7)
 - Requirement of 'halo regions' for numerical equations (cf. Lecture 7)

[6] HPC & ParFlow

message-passing

Terrestrial Systems – CLM Model Parallel Application (1)

- Modelling 'land surface' processes
 - Community land model (CLM)
 - Simulates concepts of ecological climatology
 - Understand how natural & human changes in vegetation affect the climate
 - Examine physical, chemical, and biological processes that affect (or are affected by climate across spatial / temporal scales
 - Investigate terrestrial ecosystems through their cycling of energy, water, chemical elements, and trace gases
 - Explore impact of terrestrial ecosystems as important determinants of climate

[8] CLM Web page

Terrestrial Systems – CLM Model Parallel Application (2)

- Parallelization Techniques
 - Implements 'hybrid programming' (cf. Lecture 7)
 - OpenMP within a node (cf. Lecture 6)
 - MPI routines for parallelism across nodes (cf. Lecture 3)
- Coupled as module
 - Code is often fully coupled with ParFlow
 - Coupling is performed in a way that CLM is incorporated into ParFlow as a module (full coupled, fully parallel)
 - E.g. flow of water on land-surface affects groundwater model

• Coupling can be done using modules where one library is a module to another in one executable

Terrestrial Systems – COSMO Model Parallel Application (1)

- Modelling 'atmosphere' processes
 - Consortium for Small-scale Modeling (COSMO)
 - Athmospheric model based on Fortran 90 & numerical methods to simulate weather
 - Use for non-hydrostatic limited-area (e.g. regional atmospheric model)
 - Use a variety of physical processes by parameterization schemes
 - Perform 'Data assimilation' from various observations (simulation alone not sufficient)
 - E.g. radiosonde (wind, temperature, humidity)
 - E.g. aircraft (wind, temperature)
 - E.g. wind profiler (wind)

[9] COSMO Web page

COSMO enables the parallel simulation of detailed regional atmospheric model processes

Terrestrial Systems – COSMO Model Parallel Application (2)

- Parallelization Techniques
 - Distributed memory using MPI (cf. Lecture 3)

- Two dimensional domain decomposition (cf. Lecture 2)
- Each processor gets a part of data (one subdomain)
- Solves model equations in parallel
- Use of 'halo technique'
 - (cf. Lecture 7)
 - 2 halo gridlines that belong to neighbor (configurable property)
 - Different computing/solver schemes require different halo lines (2 or 3)
 - Grid points belonging to the halo are exchanged using MPI

[9] COSMO Web page

Terrestrial Systems – Coupling Different Parallel Libraries (1)

- Scientific case: understanding water cycle processes and variability across scales including climate and land use impacts
 - Computational challenge: earth system models at regional scale
- Terrestrial systems simulations
 - E.g. TerrSysMP coupled parallel code(s)
 - Many processes are still poorly reproduced by models
 - Overcome isolated research and simulation for specific elements in earth systems
 - Full integrated groundwatervegetation-atmosphere simulation algorithms

Coupled codes execute n different parallel application codes together to simulate one ecosystem

Terrestrial Systems – Coupling Different Parallel Libraries (2)

- Requires a coupling technique running on a HPC machine
 - Example: OASIS3 coupler for ParFlow, CLM & COSMO
 - 1+3 parallel applications together referred to as 'TerrSysMP parallel coupled application'
 - OASIS3 is a separate executable that manages data exchange between others
 - Coupling data arrays are repartitioned to the full domain by OASIS
 - OASIS3-MCT library is part of each component model
 - Coupling arrays only consist of the local fraction of full domain
 - Routed by OASIS to the destination processor

Coupled codes require another separate executable that is a coupler exchanging global data

Terrestrial Systems – Coupling Different Parallel Libraries (3)

- Performance optimization required (cf. Lecture 9) [10] F. Gasper et al.
 - Using performance analysis tool SCALASCA
 - Resources are distributed according to load (better load balance)
 - LateSender wait state is significantly reduced

Short Lecture 12 – Terrestrial Systems & Climate

[Video] Terrestrial Systems with ParFlow coupled with CLM

[11] ParFlow coupled with CLM

Climate – Numerical Weather Prediction & Forecast

- Numerical Weather Prediction (NWP) uses mathematical models of the atmosphere and oceans to predict the weather based on current weather observations (e.g. weather satellites) as inputs.
- Performing complex calculations necessary for NWP requires supercomputers (limit ~6 days)
- NWP belongs to the field of numerical methods that obtain approximate solutions to problems

modified from [12] Wikipedia on 'Numerical Weather Prediction'

- Application areas
 - Global and regional short-term weather forecast models in operations
 - Perform long-term climate prediction research (e.g. climate change)
- NWP model characteristics
 - Use ordinary/partial differential equations (PDEs) (i.e. use laws of physics, fluids, motion, chemistry)
 - Domain decomposition (cf. Lecture 2): 3D grid cells
 - Computing/cell: winds, heat transfer, solar radiation, relative humidity & surface hydrology
 - Interactions with neighboring cells: used to calculate atmosopheric properties over time

Climate – PDEs in Atmospheric Research (1)

- HPC Atmospheric Models
 - Simulations produce meterological information for given locations
 - Different 'temporal resolutions/scales': future times, days to decades
 - Different 'spatial solutions/scales': meters to kilometers
 - Use primitive equations to enable model evolution over space and time

 Primitive equations are a set of nonlinear differential equations that are used to approximate global atmospheric flow in atmospheric models and predict/simulate future states of atmospheres

- Set of Primitive Equations
 - 1. Conservation of momentum: Describe hydrodynamical flow on the surface of a sphere (e.g. vertical motion smaller than horizontal motion)

modified from [13] Wikipedia on 'Primitive Equations'

- 2. Thermal energy equation: Overall temperature of the modelled system in relation to heat sources and sinks
- 3. Continuity equation: Describe the conversation of mass

Climate – PDEs in Atmospheric Research (2)

- HPC Model evolution over space and time
 - Based on primitive equations (alongside e.g. gas laws)
 - Simulations shange of density, pressure, potential temperature scalar fields, air velocity (aka wind) vector fields of the atmosphere over time
- Computational challenges
 - Nonlinear PDEs are impossible to solve exactly through analytical methods
 - Idea is to obtain approximate solutions with numerical methods
- Simulation over time
 - Initialization of equations based on analysis data or research question
 - Rates of changes determined via a time increment known as 'time step'
 - Approach is repeated until solution reaches the desired forecast time

 Simulations over time need to maintain 'numerical stability': the length of the time step chosen within the model is related to the distance between the points on the computational grid

modified from [12] Wikipedia on 'Numerical Weather Prediction'

Climate – WRF Model Parallel Application – Examples

Software package Weather Research and Forecasting (WRF) includes parallelization techniques and enables a wide range of meteorological applications across scales (meters – 1000 of KMs)

Climate – WRF Model Parallel Application – Software

- The WRF model is a NWP system that enables the simulation and prediction of the atmosphere
 It is a scalable parallel HPC simulation for distributed-memory & shared-memory systems
 - It is a scalable parallel HPC simulation for distributed-memory & shared-memory systems
 - Weather Research and Forecasting (WRF) model
 - Takes advantage of PDEs (and parallel solvers)
 - Maintained and support as a community model
 - Plug-compatible modules for extensions
 - Research advances have direct path to operations
 - Numerous physics options (link with the broader HPC modeling community) (e.g. air quality modeling)
 - Selected software package features
 - Available as open-source tool implementing parallelization techniques
 - Implements a modular & hierarchical design
 - Supports a model coupling infrastructure & NetCDF data format support
 - Enables integration into bigger earth system model frameworks

WRF

[18] WRF model Webpage

code used for daily weather forecasts by MetOffices worldwide as service to tax payers

tax payers pay some scientists to better the WRF model → ROI / impact over years

Climate – WRF Model Parallel Application – Parallelization (1)

- Parallel simulation sciences
 - E.g. reflecting real data obtained from observations, analyses, etc.
 - E.g. enable idealized atmospheric conditions
- Approach
 - Implements 'hybrid programming' (cf. Lecture 7)
 - Use of 'domain decomposition' (cf. Lecture 2) dividing work
 - Model domains are decomposed for parallelism on two-levels using 'patches' and 'tiles'

(patch: section of model domain allocated to a distributed memory node)

(mediation layer solver or physics driver)

(one patch is divided into multiple tiles)

modified from [19] WRF – Code and Parallel Computing Short Lecture 12 – Terrestrial Systems & Climate (tile: section of a patch allocated to a shared-memory processor within a node)

Climate – WRF Model Parallel Application – Parallelization (2)

- Usage for 'halo' (cf. Lecture 7)
 - Code example based on Fortran
 - Horizontal data dependencies
 - E.g. i+1, i+1, etc.: indexed operands may lie in the patch of a neighboring processor
 - Problem: neighbor's updates to such an element of the array is not accessible on this processor

modified from [19] WRF – Code and Parallel Computing

Short Lecture 12 – Terrestrial Systems & Climate

(module_diffusion.F)

JBROUTINE horizontal_diffusion_s (tendency, rr, var,	
 DO j = jts jte	
DO k = kts ktf	
DO i - its ite	
mrdx=msft(j j)*rdx	
mrdy=msft(i,j) rdv	
tendency(i,k,j)=tendency(i,k,j)-	
(mrdx*0.5*((rr(i+1,k,j)+rr(i,k,j))*H1(i+1,k,j)-	8
(rr(i-1,k,j)+rr(i,k,j)) *H1(i,k,j)) +	8
mrdv*0.5*((rr(i,k,j+1)+rr(i,k,j))*H2(i,k,j+1)-	8
(rr(i,k,j-1)+rr(i,k,j))*H2(i,k,j)) -	8
msft(i,j) * (Hlavg(i,k+1,j) - Hlavg(i,k,j) +	8
H2avg(i,k+1,j) - H2avg(i,k,j)	8
)/dzetaw(k)	8
)	
ENDDO	
ENDDO	
ENDDO	

(halo updates: get values from memory of left processor to memory of right neighbour processor)

(Periodic boundary updates use interprocess communication)

Climate – WRF Model Parallel Application – Parallelization (3)

- Usage for transposes
 - Different parallel transposes are supported
 - Take advantages of MPI
- Overview of parallelization
 - HPC terminology vs. application domain-specific terminology
 - Evolved differently in time

[19] WRF – Code and Parallel Computing

 One of the most common misunderstandings between the technical HPC community and the application domain-specific communities (e.g. climate) are wrongly interpreted terminologies

Climate – WRF Model Parallel Application – pNetCDF

- Need for Parallel I/O (cf. Lecture 4)
 - WRF is output-bound ('writes costs much')
- Use Serial & parallel NetCDF (cf. Lecture 4)
 - Provides an I/O layer implemented with parallel NetCDF (pNetCDF)
 - I/O performance gain is considerable against using not pNetCDF

Serial NetCDF collected and written by gangs of MPI tasks (quilting)
 Parallel NetCDF written to single files by all MPI tasks in a gang

[20] Opportunities for WRF Model Acceleration

Parallel NetCDF can be used to significantly improve I/O output performance of WRF codes

[Video] Climate Modeling with Supercomputers

[21] Climate modelling with Supercomputers

Lecture Bibliography

Lecture Bibliography (1)

- [1] 'CINECA 13th Summerschool on Scientific Visualization', Online: http://www.hpc.cineca.it/content/training-material
- [2] M. Riedel, Th. Eickermann, S. Habbinga, W. Frings, P. Gibbon, D. Mallmann, F. Wolf, A. Streit, Th. Lippert, Felix Wolf, Wolfram Schiffmann, Andreas Ernst, Rainer Spurzem, Wolfgang E. Nagel, "Computational Steering" and Online Visualization of Scientific Applications on Large-Scale HPC Systems within e-Science Infrastructures," e-science, pp.483-490, Third IEEE International Conference on e-Science and Grid Computing, 2007
- [3] Terrestrial Systems Simulation Lab, Online: http://www.hpsc-terrsys.de/simlab
- [4] Lecture notes Introduction to Scientific Computing, TU Braunschweig, Online: https://www.tu-braunschweig.de/wire/lehre/skripte/index.html;jsessionid=TRIFORK661360156949
- [5] Wikipedia on 'Partial Differential Equation', Online: http://en.wikipedia.org/wiki/Partial differential equation
- [6] Reed Maxwell, 'The ParFlow Hydrologic Model: HPC Highlights and Lessons Learned'
- [7] ParFlow Project Online: http://computation.llnl.gov//casc/parflow/parflow home.html
- [8] Community Land Model (CLM), Online: http://www.cgd.ucar.edu/tss/clm/
- [9] Consortium for Small-scale Modeling (COSMO), Online: http://www.cosmo-model.org/
- [10] F. Gasper et al.: Scaling of the fully coupled Terrestrial Systems Modeling Platform on BlueGene/Q, Online: http://www.geosci-model-dev.net/7/2531/2014/gmd-7-2531-2014.pdf
- [11] YouTube Video, 'ParFlow coupled to CLM', Online: <u>http://www.youtube.com/watch?v=x2ZL_U6IIR0</u> Short Lecture 12 – Terrestrial Systems & Climate

Lecture Bibliography (2)

- [12] Wikipedia on 'Numerical Weather Prediction', Online: <u>http://en.wikipedia.org/wiki/Numerical weather prediction</u>
- [13] Wikipedia on 'Primitive Equations', Online: <u>http://en.wikipedia.org/wiki/Primitive_equations</u>
- [14] Wikipedia on 'WRF',
 Online: <u>http://en.wikipedia.org/wiki/Weather Research and Forecasting Model</u>
- [15] Webpage 'Polar WRF',
 Online: <u>http://polarmet.osu.edu/PWRF/</u>
- [16] Nikolai Nawri et al., 'Evaluation of WRF Mesoscale Model Simulations of Surface Wind over Iceland', Online: <u>http://en.vedur.is/media/2012_010_web.pdf</u>
- [17] Nikolai Nawri, Guðrún Nína Petersen, Halldór Björnsson & Kristján Jónasson (2013). The wind energy potential of Iceland.Reykjavík: Veðurstofa Íslands,
 Online: <u>http://www.vedur.is/media/vedurstofan/utgafa/skyrslur/2013/2013_001_Nawri_et_al.pdf</u>
- [18] WRF Model Webpage,
 Online: <u>http://www.wrf-model.org/index.php</u>
- [19] John Michalakes et al., 'WRF Software: Code and Parallel Computing', Online: <u>http://www2.mmm.ucar.edu/wrf/users/tutorial/201301/gill_software.pdf</u>
- [20] John Michalakes et al., 'Opportunities for WRF Model Acceleration', Online: <u>http://www2.mmm.ucar.edu/wrf/users/workshops/WS2012/ppts/1.4.pdf</u>
- [21] YouTube Video, 'Climate Modeling With Supercomputers', Online: <u>http://www.youtube.com/watch?v=izCoiTcsOd8</u>

