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Using Support Vector Machines

LECTURE 3

Review of Lecture 2

 Supervised Classification
 Finding a target distribution for

realistic learning situations
 Assume unknown probability

distribution over the input space
 Hypothesis search with M

models and we pick one

 Statistical Learning Theory

Lecture 3 – Support Vector Machines

Probability Distribution

(set of candidate formulas)

Hypothesis Set Final Hypothesis

‘Probably‘‘Approximately‘
‘Number of
samples N 
important for
learning‘

Learning Algorithm (‘train a system‘) ‘learn: get error smaller‘

Shift the view to the data
and we exchange M with 
growth function that is 
indeed depending on N

‘generalize well for unseen data‘

(set of known algorithms)
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Outline of the Course

1. Machine Learning Fundamentals

2. Supervised Classification

3. Support Vector Machines

4. Applications and Serial Computing Limits

5. Kernel Methods

6. Applications and Parallel Computing Benefits
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Outline

 Maximal Margin Classifier
 Term Support Vector Machines Refined
 Margin as Geometric Interpretation
 Optimization Problem & Implementation
 Solving and Limitations of Classifier
 Apply Classifier to Flower Problem

 Support Vector Classifier
 From Hard-margin to Soft-margin
 Understand the slack variables
 Role of Regularization Parameter C
 Solving and Limitations of Classifier
 Apply Classifier to Flower Problem

Lecture 3 – Support Vector Machines

 Promises from previous 
lectures reviewed…

 Lecture 2: Lecture 3 
provides details on how 
support vector machines 
benefit from regularization 
methods
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Maximum Margin Classifier
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Lecture 3 – Support Vector Machines

Methods Overview – Focus in this Lecture

 Groups of data exist
 New data classified 

to existing groups

Classification

?

Clustering Regression

 No groups of data exist
 Create groups from

data close to each other

 Identify a line with
a certain slope
describing the data

 Statistical data mining methods can be roughly categorized in classification, clustering, or 
regression augmented with various techniques for data exploration, selection, or reduction

7 / 58
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Term Support Vector Machines Refined

 Term detailed refinement into ‘three separate techniques’
 Practice: applications mostly use the SVMs with kernel methods

 ‘Maximal margin classifier‘ 
 A simple and intuitive classifier with a ‘best‘ linear class boundary
 Requires that data is ‘linearly separable‘

 ‘Support Vector Classifier‘
 Extension to the maximal margin classifier for non-linearly seperable data
 Applied to a broader range of cases, idea of ‘allowing some error‘

 ‘Support Vector Machines‘  Using Non-Linear Kernel Methods
 Extension of the support vector classifier 
 Enables non-linear class boundaries & via kernels;

 Support Vector Machines (SVMs) are a classification technique developed ~1990
 SVMs perform well in many settings & are considered as one of the best ‘out of the box classifiers‘

[1] An Introduction to Statistical Learning
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Expected Out-of-Sample Performance for ‘Any Line‘

 We believe there is a (linear) pattern to be detected
 Assumption: linearly seperable data (later non-seperable cases)
 Performance question: What is the optimal line (decision boundary)?
 E.g. green data: red data: 

-1-2-3 1 2 3 4 5 6 7

1

2

-2

-1

?

 Intuition tells us just ‘furthest away’ from the closest points is a good position for the line – why?

(PLA gives us just any line
as soon as all samples are
correctly classified)

(How can we craft a margin
expressing ‘furthest away‘)
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Exercises
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Lecture 3 – Support Vector Machines

Expected Out-of-Sample Performance for ‘Best Line‘

 The line with a ‘bigger margin‘ seems to be better – but why?
 Intuition: chance is higher that a new point will still be correctly classified
 Fewer hypothesis possible: constrained by sized margin (cf. Lecture 2)
 Idea: achieving good ‘out-of-sample‘ performance is goal (cf. Lecture 2)

 Support Vector Machines (SVMs) use maximum margins that will be mathematically established

-1-2-3 1 2 3 4 5 6 7

1

2

-2

-1

(e.g. better performance
compared to PLA technique)

(Question remains:
how we can achieve 
a bigger margin)

(simple line in a linear setup
as intuitive decision boundary)
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Geometric SVM Interpretation and Setup (1)

 Think ‘simplified coordinate system‘ and use ‘Linear Algebra‘
 Many other samples are removed (red and green not SVs)
 Vector        of ‘any length‘ perpendicular to the decision boundary
 Vector     points to an unknown quantity (e.g. new sample to classify)
 Is      on the left or right side of the decision boundary?

Lecture 3 – Support Vector Machines

--

-- ++

++

--

--

 Dot product
 With      takes the projection on the 
 Depending on where projection is it is 

left or right from the decision boundary
 Simple transformation brings decison rule:

means 
 (given that b and         are unknown to us)

(projection)

++1

(constraints are not enough to fix particular b or w,
need more constraints to calculate b or w)

++
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Geometric SVM Interpretation and Setup (2)

 Creating our constraints to get b or       computed
 First constraint set for positive samples
 Second constraint set for negative samples 
 For mathematical convenience introduce variables (i.e. labelled samples)

for           and                      for 

Lecture 3 – Support Vector Machines

--

--

--

(projection)

++
--

++ --

 Multiply equations by 
 Positive samples: 
 Negative samples: 
 Both same due to                   and 

(brings us mathematical convenience often quoted)

(additional constraints just for support vectors itself helps)

2

++

++
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Geometric SVM Interpretation and Setup (3)

 Determine the ‘width of the margin‘
 Difference between positive and negative SVs:
 Projection of                       onto the vector 
 The vector        is a normal vector, magnitude is 

Lecture 3 – Support Vector Machines

--

--

++

-- ++

(projection)

 Unit vector is helpful for ‘margin width‘
 Projection (dot product) for margin width:

 When enforce constraint: 

(unit vector)

(Dot product of two vectors is a scalar, here the width of the margin)

2

++
--

3

14 / 58

Constrained Optimization Steps SVM (1)

 Use ‘constraint optimization‘ of mathematical toolkit

 Idea is to ‘maximize the width‘ of the margin: 

Lecture 3 – Support Vector Machines

--

--

++

-- ++

(projection)

(drop the constant 
2 is possible here)

(equivalent)

(equivalent for max)

(mathematical
convenience) 3

 Next: Find the extreme values
 Subject to constraints

2
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--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM (2)

 Use ‘Lagrange Multipliers‘ of mathematical toolkit
 Established tool in ‘constrained optimization‘ to find function extremum
 ‘Get rid‘ of constraints by using Lagrange Multipliers 4

 Introduce a multiplier for each constraint

 Find derivatives for extremum & set 0
 But two unknowns that might vary
 First differentiate w.r.t. 
 Second differentiate w.r.t. 

2

(interesting: non zero for support vectors, rest zero)

16 / 58
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--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM (3)

 Lagrange gives: 

 First differentiate w.r.t      

 Simple transformation brings:

 Second differentiate w.r.t. 

(i.e. vector is linear sum of samples)

(recall: non zero for support vectors, rest zero  even less samples)

5

5

17 / 58

Lecture 3 – Support Vector Machines

--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM (4)

 Lagrange gives: 

 Find minimum
 Quadratic optimization problem
 Take advantage of 5

(plug into)

(b constant
in front sum)

5
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--

--

++

-- ++

(projection)

Constrained Optimization Steps SVM (5)

 Rewrite formula: 

(was 0)

(the same)

6

(results in)

 Equation to be solved by some 
quadratic programming package

(optimization 
depends only on dot 
product of samples)

19 / 58

++1

(decision rule also
depends on 
dotproduct)

++

Use of SVM Classifier to Perform Classification

 Use findings for decision rule

Lecture 3 – Support Vector Machines

-- ++

--

--

(projection)

++

5
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Exercises
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LibSVM – Defacto Standard SVM Implementation

 Free available tool
 Includes Sequential Minimal Optimization (SMO) implementation

Lecture 3 – Support Vector Machines
[2] LibSVM Webpage

22 / 58

LibSVM – Download

 Download tar.gz (or in Windows zip bundle)

 Put package in a folder of your choice
 Alternatively copy file to your usual working environment

Lecture 3 – Support Vector Machines

[2] LibSVM Webpage

23 / 58

LibSVM – Unpack the Bundle

 Untar (or Unzip in Windows)

Lecture 3 – Support Vector Machines 24 / 58
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LibSVM – Make (only in UNIX) 

 Use make to generate executables (needs g++ compiler)

 Check executables 
important for us

Lecture 3 – Support Vector Machines

[2] LibSVM Webpage

(use in testing phase)

(use in training phase)

25 / 58

LibSVM – svm-train Parameters

 Important parameters

Lecture 3 – Support Vector Machines

[2] LibSVM Webpage

(we need a training set file)
(take default here = C-SVC)

(in this lecture we have just ‘linear kernels‘)

(Regularization Parameter)

(training phase)

Training Examples

26 / 58

LibSVM – svm-predict Parameters

 Important parameters

Lecture 3 – Support Vector Machines

(testing phase)

(the model file is generated in the training phase  the support vectors found in optimization)

(test file is a testing dataset set aside to be used once training is finished)

(output file gives us indications how each sample was classified)

Testing Examples
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Lecture 3 – Support Vector Machines

Maximal Margin Classifier – Training Set and Test Set

 Classification technique
 Given ‘labelled dataset‘
 Data matrix X (n x p)
 Training set:

n training samples
 p-dimensional space
 Linearly seperable data
 Binary classification problem

(two class classification)
 Test set:

a vector x* with test observations

(n x p-dimensional vectors)

[1] An Introduction to Statistical Learning

(class labels) (two classes)

 Maximal Margin Classifiers create a seperating hyperplane that seperates the training set samples 
perfectly according to their class labels following a reasonable way of which hyperplane to use

28 / 58

Exercises

Lecture 3 – Support Vector Machines 29 / 58

Download IRIS Dataset from LibSVM Datasets

 Scaled version of our data (cf. Lecture 1 & 2): iris.scale
 Scaling is used in order that the optimization does not have to work 

with large numbers – so one can scale, but it is not a requirement
 Sometimes the performance improved with scaling

Lecture 3 – Support Vector Machines
[2] LibSVM Webpage
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Data Preparation Phase

 Copy IRIS Dataset in your working environment

 Dataset Two-class problem,
linearly seperable
 Dataset Iris Setosa (class 1) 

and Iris Virginica (class 3)
 Iris-class1and3-training(20)/testing(30)

 Dataset Two-class problem,
not linearly seperable
 Dataset Iris Veriscolor (class 2)

and Iris Virginica (class3)
 iris-class2and3-training(20)/testing(30)

Lecture 3 – Support Vector Machines 31 / 58

Data Download

 Download the following files from B2Share

Lecture 3 – Support Vector Machines

[3] Iris Dataset LibSVM Format Preprocessing

32 / 58

Training Phase: linearly seperable case (iris-class1and3)

 Use svm-train (c<=0 not allowed)

 Check model file

Lecture 3 – Support Vector Machines 33 / 58
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Testing Phase: linearly seperable case (iris-class1and3)

 Use svm-predict (using newly created model file & testing data)

Lecture 3 – Support Vector Machines

(consistent with our graph: 100%
here possible since very easy 
problem, in practice rarely)

34 / 58
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Maximal Margin Classifier – Use of Seperating Hyperplanes

modified from [1] An Introduction to Statistical Learning

(three possible hyperplanes – any line out of infinite ones) (assigned a class depending on which side of hyperplane )

(properties of the seperating hyperplane )

(linear
decision
boundary)

(using testset to predict and assign labels via sign)

(but is this
the best
line…?)

(Intuition?)

35 / 58
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Maximal Margin Classifier – Reasoning and Margin Term

 Reasoning to pick the ‘best line‘
 There exists a ‘maximal margin hyperplane‘
 Hyperplane that is ‘farthest away‘ from the training set samples

 Identify the ‘margin‘ itself
 Compute the ‘perpendicular distance’
 From each training sample to a given separating hyperplane
 The smallest such distance is the ’minimal distance’

from the observations to the hyperplane – the margin

 Identify ‘maximal margin‘
 Identify the hyperplane that has the ‘farthest 

minimum distance’ to the training observations
 Also named the ‘optimal seperating hyperplane‘

(optimal seperating hyperplane)

 The maximal margin hyperplane is the seperating hyperplane for which the margin is largest

(point ‘right angle 90 degrees‘ distance to the plane)

[1] An Introduction to Statistical Learning
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Maximal Margin Classifier – Margin Performance

 Classification technique
 Classify testset samples

based on which side of the 
maximal margin hyperplane 
they are lying

 Assuming that a classifier
that has a large margin
on the training data will
also have a large margin
on the test data
(cf. also ‘the intuitive notion‘)

 Testset samples will be 
thus correctly classified

(hyperplane matches intuition)

(ßs are the coefficients of the maximal margin hyperplane)

(Compared to grey hyperplane: a ‘greater minimal distance‘
between the data points and the seperating hyperplane)

modified from [1] An Introduction to Statistical Learning

(new hyperplane has a larger margin)
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Maximal Margin Classifier – Support Vector Term

 Observation
 Three data points

lie on the edge of margin
(somewhat special data points)

 Dashed lines indicating the
width of the margin
(very interesting to know)

 Margin width is the 
distance from the special
data points to the hyperplane
(hyperplane depends directly
on small data subset: SV points)

(three points are equidistant 
to the plane, same distance)

 Points that lie on the edge of the margin are named support vectors (SVs) in p-dimensional space
 SVs ‘support‘ the maximal margin hyperplane: if SVs are moved  the hyperplane moves as well

modified from [1] An Introduction to Statistical Learning

(other points have no 
effect for the plane!)

(if all samples
gone except
SVs, same
line is result!)
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Maximal Margin Classifier – Optimization and W Vector

 Which weight       maximizes the margin?
 Margin is just a distance from ‘a line to a point‘, goal is to minimize 
 Pick         as the nearest data point to the line (or hyper-plane)…

-1-2 1 2 3 4 5 6 7

1

2

-2

-1

 Reduce the problem to a
‘constraint optimization problem‘
(vector       are the ß coefficients)

 Support vectors  achieve the margin and are positioned exactly on the boundary of the margin

(for points on plane w must be 0, 
interpret k as length of w)

k

(distance between two dashed planes is 2 / ||w|| )
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Lecture 3 – Support Vector Machines

Maximal Margin Classifier – Optimization and N Samples

 Approach: Maximizing the margin
 Equivalent to minimize objective function

 ‘Lagrangian Dual problem‘
 Use of already established Lagrangian method :

 Interesting properties
 Simple function: Quadratic in alpha
 Simple constraints in this optimization problem (not covered here)
 Established tools exist: Quadratic Programming (qp)

(big data impact, 
important dot product)

 Practice shows that #N moderate is ok, but large #N (‘big data‘) are problematic for computing
 Quadratic programming and computing the solving depends on number of samples N in the dataset

(chain of math turns optimization problem into solving this)

(rule of thumb)

(substituted 
for plain || w || 
for mathematical
convenience)

(original and modified have same w and b ) subject to yi (w   xi – b) >= 1.
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Maximal Margin Classifier – Optimization and # SV Impacts

 Interpretation of QP results
 The obtained values of alpha (lagrange multipliers) are mostly 0
 Only a couple of alphas are > 0 and special: the support vectors (SVs)

-1-2 1 2 3 4 5 6 7

1

2

-2

-1

 Generalization measure: #SVs as ‘in-sample quantity‘  10SVs/1000 samples ok, 500SVs/1000 bad
 Reasonsing towards overfitting due to a large number of SVs (fit many, small margin, gives bad Eout)

 N x N, usually not sparse
 Computational complexity

relies in the following:

(quadratic coefficients, alphas are result from QP)

(three support vectors create optimal line) (big data
challenge)
(e.g. all
datasets vs.
sampling)

(vector of alpha is returned)

(rule of thumb)
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Solution Tools: Maximal Margin Classifier & QP Algorithm

Elements we 
not exactly

(need to) know 

Training Examples

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Final Hypothesis

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

(ideal function)

(historical records, groundtruth data, examples)

(final formula)

(Maximal Margin Classifier)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(Quadratic Programming)

‘constants‘ 
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise

42 / 58



7/6/2016

15

Lecture 3 – Support Vector Machines

Maximal Margin Classifier – Solving and Limitations

 Limitation
 Non linearly separable data (given mostly in practice)
 Optimization problem has no solution M > 0 (think point moves over plane)
 No separating hyperplane can be created (classifier can not be used)

 Solving constraint optimization problem chooses coefficients that maximize M & gives hyperplane
 Solving this problem efficiently is possible techniques like sequential minimal optimization (SMO)
 Maximal margin classifiers use a hard-margin & thus only work with exact linearly seperable data

(move effects 
the margin)

(no exact
seperation
possible)

(… but with 
allowing some 
error maybe, 
a ‘soft margin‘…)

modified from [1] An Introduction to Statistical Learning

(no error
allowed,
a ‘hard 
margin‘)

(allow some
error the
margin will
be bigger,
… maybe
better Eout)
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Support Vector Classifier

Lecture 3 – Support Vector Machines 44 / 58

Lecture 3 – Support Vector Machines

Support Vector Classifiers – Motivation 

 Approach
 Generalization of the ‘maximal margin classifier‘
 Include non-seperable cases with a soft-margin (almost instead of exact)
 Being more robust w.r.t. extreme values (e.g. outliers) allowing small errors

 Support Vector Classifiers develop hyperplanes with soft-margins to achieve better performance
 Support Vector Classifiers aim to avoid being sensitive to individual observations (e.g. outliers)

(outlier) (significant reduction of 
the maximal margin)
(overfitting, cf Lecture 10:
maximal margin classifier & 
hyperplane is very sensitive 
to a change of 
a single data point)

(get most & but not all training 
data correcly classified)

[1] An Introduction to Statistical Learning
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Support Vector Classifiers – Modified Technique Required 

 Previous classification technique reviewed
 Seeking the largest possible margin, 

so that every data point is… 
 … on the correct side of the hyperplane
 … on the correct side of the margin

 Modified classification technique
 Enable ‘violations of the hard-margin‘

to achieve ‘soft-margin classifier‘
 Allow violations means: 

allow some data points to be…
 … on the incorrect side of the margin
 … even on the incorrect side of the hyperplane

(which leads to a misclassification of that point)

(incorrect side of margin)

(incorrect side of hyperplane)

[1] An Introduction to 
Statistical Learning

(SVs refined: data points that lie directly on the margin or on the wrong side 
of the margin for their class are the SVs  affect support vector classifer)
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Support Vector Classifier – Optimization Problem Refined 

 Optimization Problem
 Still maximize margin M
 Refining constraints to include 

violoation of margins
 Adding slack variables 

(slightly violate the Margin)

(C is a nonnegative tuning parameter 
useful for regularization, cf. Lecture 10,
picked by cross-validation method)

 Lecture 4 provides details on validation methods that provides a value for C in a principled way

(allow datapoints to be on the wrong 
side of the margin or hyperplane)

 C Parameter & slacks
 C bounds the sum of the 

slack variables

 C determines the number & severity of violations that will be tolerated to margin and hyperplane
 Interpret C as budget (or costs) for the amount that the margin can be violated by n data points

[1] An Introduction to Statistical Learning

(C is used here
to bound the error)
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Support Vector Classifier – Understanding the Slack

 Allowing some errors or violations of the margin

[4] SVMs

(As budget C increases, the classifier 
becomes more tolerant of violations of the 
margin, margin will be thus wider)

(These all correct samples
dont matter contributing to 
a robust classifier and 
unique property of SVCs)
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Lecture 3 – Support Vector Machines

Support Vector Classifier – Impact of Regularization with C

 Approach: Maximizing the margin
 Equivalent to minimize objective function

 Support Vector Classifier
 Same approach for solving
 Adding slacks variables
 C parameter that enables regularization (i.e. size of margin)

(maximal 
margin 
classifier)

 Lecture 4 provides details on validation methods that provides a value for C in a principled way

(C large) (C small)

[1] An Introduction to Statistical Learning

(many support
vectors)

(fewer
support
Vectors:
just #8)

(C is used here
to multiply the
sum of errors
for increased 
severity, because
# errors should be 
kept small, not
a budget here)

(high fit to the data)
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Solution Tools: Support Vector Classifier & QP Algorithm

Elements we 
not exactly

(need to) know 

Training Examples

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Final Hypothesis

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

(ideal function)

(historical records, groundtruth data, examples)

(final formula)

(Support Vector Classifier)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(Quadratic Programming)

‘constants‘ 
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise
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Support Vector Classifier – Solving & Limitations 

 Limitation: Still linear decision boundary…
 Non linearly separable where soft-margins are no solution
 Support Vector Classifier can not establish a non-linear boundary

 Solving constraint optimization problem chooses coefficients that maximize M & gives hyperplane
 Solving this problem efficiently is possible due to sequential minimal optimization (SMO)
 Support vector classifiers use a soft-margin & thus work with slightly(!) non-linearly seperable data

(a linear decision boundary by 
support vector classifier is not 
an option)

perfect, but 
impossible
until now

poor
generalization

modified from [1] An Introduction to Statistical Learning

(… but maybe there are more
advanced techniques that help…)
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Exercises
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Training Phase: non-linearly seperable case (iris-class2and3)

 Use svm-train (c<=0 not allowed, change value, what happens?)

 Check model file
 Next page, because

many support
vectors!

Lecture 3 – Support Vector Machines 53 / 58

Model File: non-linearly seperable case (iris-class2and3)

 Many SVs / sample 
 (careful – indicator 

for problems)
 In the linear case

we know from looking
at the data it still
be ok in this case

 Linear SVM worked:
PLA instead would 
not able to stop 
with this dataset

Lecture 3 – Support Vector Machines

 Generalization measure: #SVs as ‘in-sample quantity‘  10SVs/1000 samples ok, 500SVs/1000 bad
 Reasonsing towards overfitting due to a large number of SVs (fit many, small margin, gives bad Eout)
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Testing Phase: non-linearly seperable case (iris-class2and3) 

 Use svm-predict (using newly created model file & testing data)

Lecture 3 – Support Vector Machines

(consistent with our graph: ~4
data point will be misclassified by
a linear decision boundary)
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