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Review of Lecture 2

= Supervised Classification
= Finding a target distribution for | Larget b

realistic learning situations
= Assume unknown probability
distribution over the input space

X = ()0,

= Hypothesis search with M |  otnessset | | Final Hypothesis
models and we pick one H={h} geH q2=f

(set of candidate formulas)

= Statistical Learning Theory

‘Approximately’ ‘Probably’ :E::E\beirr\?f
| 2 7 - ‘ 2¢2 N important for
Pr[| E.(9)—FE.(9 |>¢] <= 2Mc e

‘generalize well for unseen data’

(g9) = E,_(g)

‘learn: get error smaller’
Learning Algo ina system’) & S
L) =0

(set of known algorithms) Shift the view to the data

__ and we exchange M with
Pr|[|E (g)—FE_(9)|>e] <= 4ma(2N)e= /5N growth function thatis
: e e : indeed depending on N
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Outline of the Course

Machine Learning Fundamentals

Supervised Classification

Support Vector Machines

Applications and Serial Computing Limits

Kernel Methods

Applications and Parallel Computing Benefits
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Outline

= Maximal Margin Classifier = Promises from previous

= Term Support Vector Machines Refined

lectures reviewed...
= Lecture 2: Lecture 3

= Margin as Geometric Interpretation provides details on how

= Optimization Problem & Implementation

support vector machines
benefit from regularization

= Solving and Limitations of Classifier methods

= Apply Classifier to Flower Problem

= Support Vector Classifier
= From Hard-margin to Soft-margin

= Understand

= Role of Regularization Parameter C
= Solving and Limitations of Classifier
= Apply Classifier to Flower Problem
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the slack variables
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Maximum Margin Classifier




Methods Overview — Focus in this Lecture

= Statistical data mining methods can be roughly categorized in classification, clustering, or

7/6/2016

d with various i for data i | or
Classification Clustering Regression
- ‘
v
= Groups of data exist = | No groups of data exist = |dentify a line with
= New data classified = | Create groups from a certain slope
to existing groups data close to each other describing the data
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Term Support Vector Machines Refined

=  Support Vector i (SVMs) are a i i i ~1990
= SVMs perform well in many settings & are considered as one of the best ‘out of the box classifiers’

[1] An Introduction to Statistical Learning
= Term detailed refinement into ‘three separate techniques’
= Practice: applications mostly use the SVMs with kernel methods
= ‘Maximal margin classifier’
= Asimple and intuitive classifier with a ‘best’ linear class boundary
= Requires that data is ‘linearly separable’
= ‘Support Vector Classifier”
= Extension to the maximal margin classifier for non-linearly seperable data
= Applied to a broader range of cases, idea of ‘allowing some error’
= ‘Support Vector Machines’ = Using Non-Linear Kernel Methods
= Extension of the support vector classifier

= Enables non-linear class boundaries & via kernels;
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Expected Out-of-Sample Performance for ‘Any Line’

= We believe there is a (linear) pattern to be detected
= Assumption: linearly seperable data (later non-seperable cases)
= Performance question: What is the optimal line (decision boundary)?
= E.g.green data:

L) (0.(0)) red data: | ( &'
1 i I |

(PLA gives us just any line
as soon as all samples are
correctly classified)

(How can we craft a margin
expressing ‘furthest away’)

I ® Intuition tells us just ‘furthest away’ from the closest points is a good position for the line — why?
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Exercises
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Expected Out-of-Sample Performance for ‘Best Line’

= The line with a ‘bigger margin‘ seems to be better — but why?
= |ntuition: chance is higher that a new point will still be correctly classified
= Fewer hypothesis possible: constrained by sized margin (cf. Lecture 2)
= |dea: achieving good ‘out-of-sample’ performance is goal (cf. Lecture 2)

(e.g. better performance
compared to PLA technique)

1 { ] 9 ¢ (simple line in a linear setup
as intuitive decision boundary)
T —% & v T T T T
3 2 a4 1 A4 s 6 7
1 9 e
2 (Question remains:

how we can achieve
a bigger margin)

I = Support Vector Machines (SVMs) use maximum margins that will be mathematically established
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Geometric SVM Interpretation and Setup (1)

= Think ‘simplified coordinate system’and use ‘Linear Algebra’
= Many other samples are removed (red and green not SVs) @ #
= Vector W of ‘any length’ perpendicular to the decision boundary
= Vector 11 points to an unknown quantity (e.g. new sample to classify)
= |s 11 on the left or right side of the decision boundary?

**. (projection)

9 = Dot product w-u = (" = —b
= With u takes the projection on the W
= Depending on where projection is it is
left or right from the decision boundary
= Simple transformation brings decison rule:
@ w-u+b>0->means#
w = (given thatband w are unknown to us)

(constraints are not enough to fix particular b or w,
need more constraints to calculate b or w)
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Geometric SVM Interpretation and Setup (2)

= Creating our constraints to get b or w computed
= First constraint set for positive samples # WX, +b>1
= Second constraint set for negative samples ®  w - x_ + b < |

= For mathematical convenience introduce variables (i.e. labelled samples)

yi = +fore and y; = —fore
" {projection)
- * = Multiply equations by u:
= Positive samples: i (x; - w + b) > 1
° ... " = Negative samples: ¥i(X;-w +b) =1
= Bothsamedueto ¥ = +and i; = —
u (brings us mathematical convenience often quoted)
® yil%i-w+b) =120
w (additional constraints just for support vectors itself helps)
@uilxi-w+h)—1=0
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Geometric SVM Interpretation and Setup (3)

= Determine the ‘width of the margin’
= Difference between positive and negative SVs: X — X_
= Projection of x, — x_ onto the vector w
y " The vector W is a normal vector, magnitude is ||W

.. (projection)

(Dot product of two vectors is a scalar, here the width of the margin)

= Unit vector is helpful for ‘margin width’

= Projection (dot product) for margin width:

w
» X4 — Xo (unit vector)
w
x 3 E——) o)
w
g ° 1—b 1+b
= When enforce constraint: i =+%

@uilxi-w+h)—1=0 H=-9
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Constrained Optimization Steps SVM (1)

= Use ‘constraint optimization’ of mathematical toolkit

= Ideais to ‘maximize the width’ of the margin: fria.r (drop the constant
w

2is possible here)

1
» mar (equivalent)
w
» min||w (equivalent for max)
; 1 ! (mathematical
» min—|lwl[2  (mathematica
9 convenience)
= Next: Find the extreme values

o, = Subject to constraints

@ ilxi-w+b)—-1=0

W

*.. (projection)
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Constrained Optimization Steps SVM (2)

= Use ‘Lagrange Multipliers’ of mathematical toolkit
= Established tool in ‘constrained optimization’ to find function extremum
= ‘Get rid’ of constraints by using Lagrange Multipliers @
w @y,(x,- w+b=-1)=0
= Introduce a multiplier for each constraint
1 y " ;
L{a) = 5w s — Zf’ xi-w+b)—1

(interesting: non zero for support vectors, rest zero)

... (projection)

= Find derivatives for extremum & set 0
= But two unknowns that might vary

X = First differentiate w.r.t. W'

= Second differentiate w.rt.

Lecture 3 - Support Vector Machines
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Constrained Optimization Steps SVM (3)

2 w "—Zn.;-_u.[x,-w +b) — 1]
= First differentiate w.r.tw
w L —
"-., : =W — Lu,u,x, =

w

= lagrange gives: [(n) —

= Simple transformation brings:
@w = E ;X (ie. vector is linear sum of samples)
4

(recall: non zero for support vectors, rest zero = even less samples)

= Second differentiate w.r.t. i

x ’_r”;:: = —ZI’I.U. =T » Zu,y, =10 @
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Constrained Optimization Steps SVM (4)

) T . .
* Lagrange gives: L(a) = - w]/* - Zn,;_u.[x,-\\' FbY — 1

. f ) (plug into)
= Find minimum
w = Quadratic optimization problem

v.
*.. (projection)

= Take advantage of @ W= x O

1
* L= Q(E agixi) - (3 ayx;)
e = X E ( E )
R 2t - X - | ;15X )

X - -
— Z ayib + 2 o
X (b constant
in front sum)
E gy =10
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Constrained Optimization Steps SVM (5)

1 \
* Rewrite formula: £ = Z”.!hx. ) fz ;%)

- - .
- awixi - () ayyx;)
//
-
— E,,ﬂ,a;,b— E o
" (was0)
(optimization

(results in) depends only on dot
product of samples)

L= Z o — lJ Z Z”r”_:.’a’-.’l
I |

L = Equation to be solved by some
quadratic programming package

(the same)

Lecture 3 - Support Vector Machines
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Use of SVM Classifier to Perform Classification

= Use findings for decision rule
(decision rule also

@ W= Z o X depends on

dotproduct)

@t-11+b>[]* B Zn,y—b")t}+

**. (projection)

Lecture 3 - Support Vector Machines
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LibSVM - Defacto Standard SVM Implementation

= Free available tool

" Includes

equential Minimal Optimization (SMO) implementation

= pn Wit vrass .
s cusn: LIBSVM — A Library for Support Vector Machines

Chih-Chung Chang and Chih-jen Lin

[2] LibSVM Webpage

Lecture 3 - Support Vector M:
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LibSVM - Download
= Download tar.gz (or in Windows zip bundle)

[2] LibSVM Webpage

= Put package in a folder of your choice
= Alternatively copy file to your usual working environment

Lecture 3 - Support Vector Machines

LibSVM - Unpack the Bundle

= Untar (or Unzip in Windows)

Lecture 3 - Support Vector Machines




LibSVM — Make (only in UNIX)

= Use make to generate executables (needs g++ compiler)

= Check executables
important for us

{ - | (use in testing phase)

{ - | (use in training phase)

[2] LibSVM Webpage

Lecture 3 - Support Vector Machines
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LibSVM - svm-train Parameters

= |mportant parameters (training phase)

1 ] (we need a training set file)

™ (oatelt | (take default here = C-SVC)

| (in this lecture we have just ‘linear kernels')

T 17] (Regularization Parameter)

Training Examples
T T |

[2] LibSVM Webpage

Lecture 3 - Support Vector Machines

LibSVM — svm-predict Parameters

= |Important parameters (testing phase)

(the model file is generated in the training phase = the support vectors found in optimization)

(test file is a testing dataset set aside to be used once training is finished)

(output file gives us indications how each sample was classified)

Testing Examples.

Lecture 3 - Support Vector Machines




Maximal Margin Classifier — Training Set and Test Set

= Classification technique
Given ‘labelled dataset’ r

Data matrix X (n x p) Tip

(n x p-dimensional vectors)

Training set:
n training samples

p-dimensional space

Y,-ooadin € {=1.1}
® Linearly seperable data (class labels)  (two classes)
= Binary classification problem
(two class classification)
= Test set: - . w1
x = {J'I ree .I'PJ

a vector x* with test observations

7/6/2016

= Maximal Margin Classifiers create a seperating hyperplane that seperates the training set samples
perfectly according to their class labels inga way of which to use

[1] An Introduction to Statistical Learning

Lecture 3 - Support Vector Machines

Exercises

Lecture 3 - Support Vector Machines

Download IRIS Dataset from LibSVM Datasets

= Scaled version of our data (cf. Lecture 1 & 2): iris.scale

Scaling is used in order that the optimization does not have to work
with large numbers — so one can scale, but it is not a requirement

Sometimes the performance improved with scaling

[2] LibSVM Webpage

Lecture 3 - Support Vector Machines
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Data Preparation Phase

= Copy IRIS Dataset in your working environment

= Dataset Two-class problem,
linearly seperable
= Dataset Iris Setosa (class 1)
and Iris Virginica (class 3)
= |ris-classland3-training(20)/testing(30)
= Dataset Two-class problem,
not linearly seperable

= Dataset Iris Veriscolor (class 2)
and Iris Virginica (class3)

= jris-class2and3-training(20)/testing(30)

Lecture 3 - Support Vector Machines
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Data Download

= Download the following files from B2Share

[3] Iris Dataset LibSVM Format Preprocessing

s Dutaset LIBSVM Format Praprocessing

Lecture 3 - Support Vector

Training Phase: linearly seperable case (iris-classland3)

= Use svm-train (c<=0 not allowed)

= Check model file

Lecture 3 - Support Vector Machines
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Testing Phase: linearly seperable case (iris-classland3)

= Use svm-predict (using newly created model file & testing data)

petalwidth{im cm)

(consistent with our graph: 100%
here possible since very easy
problem, in practice rarely)

petal largeh fin em)

Lecture 3 - Support Vector Machines
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Maximal Margin Classifier — Use of Seperating Hyperplanes

(three possible hyperplanes — any line out of infinite ones)  (assigned a class depending on which side of hyperplane )

(linear
decision
boundary)

IS (but is this
= - = | the best
i, 1

line...?)

(Intuition?)
X X
(properties of the seperating hyperplane ) (using testset to predict and assign labels via sign)

modified from [1] An Introduction to Statistical Learning g

Lecture 3 - Support Vector Machines

Maximal Margin Classifier — Reasoning and Margin Term

= Reasoning to pick the ‘best line’
= There exists a ‘maximal margin hyperplane’ (optimal seperating hyperplane)
= Hyperplane that is ‘farthest away’ from the training set samples

= |dentify the ‘margin’ itself
= Compute the ‘perpendicular distance’ (point right angle 90 degrees’ distance to the plane)
= From each training sample to a given separating hyperplane

= The smallest such distance is the ‘'minimal distance’
from the observations to the hyperplane — the margin

= |dentify ‘maximal margin’

= |dentify the hyperplane that has the ‘farthest
minimum distance’ to the training observations

= Also named the ‘optimal seperating hyperplane’

The maximal margin hyperplane is the seperating hyperplane for which the margin is largest I

[1] An Introduction to Statistical Learning

Lecture 3 - Support Vector Machines
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Maximal Margin Classifier — Margin Performance

(new hyperplane has a larger margin)

= Classification technique

= Classify testset samples = Figed:
based on which side of the 3 4
maximal margin hyperplane

they are lying "

(Rs are the coefficients of the maximal margin hyperplane) %%
= Assuming that a classifier
that has a large margin
on the training data will oy
also have a large margin
on the test data
(cf. also ‘the intuitive notion‘)

Testset samples will be  (hyperplane matches intuition)

thus correctly classified (Compared to grey hyperplane: a greater minimal distance’

between the data points and the seperating hyperplane)
modified from [1] An Introduction to Statistical Learning

Lecture 3 - Support Vector Machines
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Maximal Margin Classifier — Support Vector Term

= Observation
= Three data points
lie on the edge of margin
(somewhat special data points)

(three points are equidistant
to the plane, same distance)

(if all samples
= Dashed lines indicating the bt
width of the margin - . line s result!)

(very interesting to know)
Margin width is the

distance from the special

data points to the hyperplane
(hyperplane depends directly
on small data subset: SV points)

(other points have no
effect for the plane!)

modified from [1] An Introduction to Statistical Learning

=  Points that lie on the edge of the margin are named support vectors (SVs) in p-dimensional space
=  SVs ‘support’ the maximal margin hyperplane: if SVs are moved - the hyperplane moves as well

Lecture 3 - Support Vector Machines

Maximal Margin Classifier — Optimization and W Vector

= Which weight w maximizes the margin?
= Margin is just a distance from ‘a line to a point’, goal is to minimize W
= Pick . asthe nearest data point to the line (or hyper-plane)... ©

(distance between two dashed planesis2/ | |w]])

Reduce the problem to a
‘constraint optimization problem’
(vector w are the R coefficients)

wximize M

subject to \' |

(for points on plane w must be 0,
interpret k as length of w)

riy + Briy + o 0 for sny & # 0

I = Support vectors achieve the margin and are positioned exactly on the boundary of the margin I

Lecture 3 - Support Vector Machines
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Maximal Margin Classifier — Optimization and N Samples

1 5 | (substituted
] : imizi i 11 w1\ for ptain 1w i1
Approach: Maximizing the margin min, § 5 [w| forplan |1 w1
= Equivalent to minimize objective function convenience)
(original and modified have same w and b ) subject to y; (wex,—b)>=1

= ‘Lagrangian Dual problem’ (chain of math turns optimization problem into solving this)

= Use of already established Lagrangian method :
N

N N
La) = Z ¥y, i} Z Z ..',r“.:ern._n“_x'f'x_”
1

n=1 n=1 m= (big data impact,

important dot product)

= Interesting properties
= Simple function: Quadratic in alpha
= Simple constraints in this optimization problem (not covered here)

7/6/2016

= Established tools exist: Quadratic Programming (qp) (rule of thumb)
= Practice shows that #N moderate is ok, but large #N (‘big data‘) are problematic for computing
- Q i ing and ing the solving depends on number of samples N in the dataset

Lecture 3 - Support Vector Machines

Maximal Margin Classifier — Optimization and # SV Impacts

= Interpretation of QP results (vector of apha s returned)
= The obtained values of alpha (lagrange multipliers) are mostly 0
= Only a couple of alphas are > 0 and special: the support vectors (SVs) @

(three support vectors create optimal line) = NxN, usually not sparse (big data
. . challenge)
. Co!'npgtatlonalcomplexny (e all
relies in the following: datasets vs.
. . sampling)
] ¢ 3 18y AT
e SN R R Ea— TR 1] T T "
T 11 [wwalr ywels g Y T,
(quadratic coefficients, alphas are result from QP)
(rule of thumb)

- izati #SVs as ‘i ple quantity’ > 105Vs/1000 samples ok, 500SVs/1000 bad
= Reasonsing towards overfitting due to a large number of SVs (fit many, small margin, gives bad E,,)

Lecture 3 - Support Vector Machines

Solution Tools: Maximal Margin Classifier & QP Algorithm

Unknown Target Distribution. /1 Probabily Distribution Elements we
rown Tareet DI Plulx) ; . e
targetfunction [ @ X —+ ¥ plus noise Pon X (need to) know
(ideal function) 1,
e . “constants*
x b e x in learning
Elements we
- must and/or
Training Examples Ervor Measura e
(%00 1y v (% 1) o x that might raise
1 huge demands
(historical records, grofindtruth data, examples) lfogsorog
Elements
” - that we derive
Learning Algorithm (‘train a system’) Final Hypelhe.sls our skillset
A g f ‘and that can be
(QuadraticfProgramming) (final formula) intensive
Elements.
Hypothesis Set )
{h}: weH derive from
our skillset

(Maximal Margin Classifier)

Lecture 3 - Support Ve
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Maximal Margin Classifier — Solving and Limitations

= Solving constraint optimization problem chooses coefficients that maximize M & gives hyperplane
= Solving this problem effici: is possible i like ial minimal imization (SMO)
lassifiers use a hard: gin & thus only work with exact linearly seperable data

. margin

7/6/2016

modified from [1] An Introduction to Statistical Learning
= Limitation
= Non linearly separable data (given mostly in practice)
= Optimization problem has no solution M > 0 (think point moves over plane)
= No separating hyperplane can be created (classifier can not be used)

(no error * (no exact
allowed, q0) . exact
= . seperation
a hard " . ossible)
margin’) P
(allow some .
error the / ’ ¥ .
margin will Sl o . but with
© /O (mov effects - . {
be bigger, il +| allowing some
maybe / She margin) error maybe,
better E,,) o . : i a ‘soft margin‘...)

Lecture 3 - Support Vector Machines

Support Vector Classifier

Lecture 3 - Support Vector Machines

Support Vector Classifiers — Motivation

=  Support Vector Classifiers develop hyperplanes with soft-margins to achieve better performance
=  Support Vector Classifiers aim to avoid being ivi i

to il t (e.g. outliers)

[1] An Introduction to Statistical Learning
= Approach
o L . (et most & but not all training
= Generalization of the ‘maximal margin classifier’ data correcly classified)
= Include non-seperable cases with a soft-margin (almost instead of exact)

= Being more robust w.r.t. extreme values (e.g. outliers) allowing small errors

. . . - +* (outlier) __ (significant reduction of
“" the maximal margin)

(overfitting, cf Lecture 10:
maximal margin classifier &
hyperplane is very sensitive
to a change of

asingle data point)

Lecture 3 - Support Vector Machines
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Support Vector Classifiers — Modified Technique Required
(incorrect side of margin)
= Previous classification technique reviewed
= Seeking the largest possible margin,

so that every data point is... = \

= .. on the correct side of the hyperplane
= .. onthe correct side of the margin
= Modified classification technique

= Enable ‘violations of the hard-margin‘
to achieve ‘soft-margin classifier”

(incorrect side of hyperplane)

= Allow violations means:
allow some data points to be...
= _.ontheincorrect side of the margin

= .. even on the incorrect side of the hyperplane
(which leads to a misclassification of that point)

(SVs refined: data points that lie directly on the margin or on the wrong side

[1] An Introduction to
of the margin for their class are the SVs = affect support vector classifer)

Statistical Learning

Lecture 3 - Support Vector Machines

7/6/2016

Support Vector Classifier — Optimization Problem Refined

= QOptimization Problem maximize M
= Still maximize margin M B
= Refining constraints to include subjeet te \;‘ ¥

violoation of margins
(allow datapoints to be on the wrong

® Adding slack variables €1 .. .. €N e of the margin or hyperplane)
wil Fo 1T ) = M{1 — ¢;) (slightly violate the Margin)
. (Cis used here
> D, L < (" | toboundtheerror) ™ C Parameter & slacks
- = Cbounds the sum of the

(Cis a nonnegative tuning parameter .
useful for regularization, cf. Lecture 10, slack variables €1, ..., n
picked by cross-validation method) [1] An Introduction to Statistical Learning

= Cdetermines the number & severity of violations that will be tolerated to margin and hyperplane
= Interpret C as budget (or costs) for the amount that the margin can be violated by n data points

I »> Lecture 4 provides details on validati hods that provides a value for Cin a principled way

Lecture 3 - Support Vector Machines

Support Vector Classifier — Understanding the Slack

= Allowing some errors or violations of the margin

£=1 Angin=2 / Vuww
Misclassiticd ®s
pomnt ;

.
(These all correct samples
dont matter contributing to

. .
(As budget C increases, the classifier Bliobust “55“[‘” ?';\d/c )
becomes more tolerant of violations of the - & unique "’”":’ yorsvts

margin, margin will be thus wider) . .
[4] SVMs

Lecture 3 - Support Vector Machines
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Support Vector Classifier — Impact of Regularization with C

o) (maximal
margin
classifier)

= Approach: Maximizing the margin min

[l
0

e

= Equivalent to minimize objective function

= Support Vector Classifier

(Cis used here

) to multiply the
= Same approach for solving

in Sl ¢ |4, sum of errors
) X b C E :*‘ for increased
= Adding slacks variables Wi i severity, because

= C parameter that enables regularization (i.e. size of margin) :fp’:fﬁ:”“‘)n“o“j be
: - ; abudget here)
[1] An Introduction to Statistical Learning

T c \nrgn)/"

* (Csmall)

(fewer
iy - support
o Vectors
/ (many suppért just #8)
B vectors) f

(high'fitfto the data)

I » Lecture 4 provides details on validation methods that provides a value for C in a principled way I

Lecture 3 - Support Vector Machines
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Solution Tools: Support Vector Classifier & QP Algorithm
inknown Target Distribution ¥ . robability Distribution Elements we
o g oeon (1| Pty B omente
targetfunction f ¢ X —+ ¥ pius noise P on X et o
(ideal function) 1,
. . constants’
X=(r,..1 X Inlearning
Eements we
— must and/or
Training Examples Error Measure. should have and
(3, 0, e (2 10 ) (% that might raise
[ uge demands
(historical records, grojindtruth data, examples) lfogsorog
Elements
Leaming Agorthr (tain  syste) il ypethesis hat e derhe
A g==f and that can be
(QuadraticfProgramming) (final formula) intensive
Hypothesis Set Elements.
wpothessSe thatwe
{h}: weH derve from
our skillset
(Support Vector Classifier)
Lecture 3-Support Vector Machines

Support Vector Classifier — Solving & Limitations

Solving constraint optimization problem chooses coefficients that maximize M & gives hyperplane
Solving this problem efficiently is possible due to sequential minimal optimization (SMO)
Support vector classifiers use a soft-margin & thus work with slightly(!) non-linearly seperable data

= Limitation: Still linear decision boundary...
= Non linearly separable where soft-margins are no solution

= Support Vector Classifier can not establish a non-linear boundary

perfect, but
impossible
until now

poor ’

(a linear decision boundary by
generalization

support vector classifier is not
an option)

(.. but maybe there are more
advanced techniques that help...)

modified from [1] An Introduction to Statistical Learning
Lecture 3~ Support Vector Machines
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Exercises

Lecture 3 - Support Vector Machines
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Training Phase: non-linearly seperable case (iris-class2and3)

= Use svm-train (c<=0 not allowed, change value, what happens?)

= Check model file

= Next page, because
many support
vectors!

Lecture 3 - Support Vector

Model File: non-linearly seperable case (iris-class2and3)

= Many SVs / sample

= (careful —indicator
for problems)

In the linear case

we know from looking

at the data it still

be ok in this case

Linear SVM worked:

PLA instead would

not able to stop 32233 3
with this dataset

- izati #SVs as ‘i ple quantity’ > 105Vs/1000 samples ok, 500SVs/1000 bad
= Reasonsing towards overfitting due to a large number of SVs (fit many, small margin, gives bad E,,)

Lecture 3 - Support Vector Machines
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Testing Phase: non-linearly seperable case (iris-class2and3)

= Use svm-predict (using newly created model file & testing data)

5

(consistent with our graph: ~4
data point will be misclassified by
a linear decision boundary)

Lecture 3 - Support Vector Machines
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