Applications of Clustering for Large-Scale Datasets **Federated Systems and Data Division** **Research Group** **High Productivity Data Processing** Dr.-Ing. Morris Riedel et al. Research Group Leader, Juelich Supercomputing Centre Adjunct Associated Professor, University of Iceland PhD Students Markus Goetz, Christian Bodenstein Juelich Supercomputing Centre & University of Iceland > RDA Session – Big Data IG, 25th September 2015 Research Data Alliance 6th Plenary, CNAM, Paris # Learning From Data – Clustering Technique Focus #### Classification - Groups of data exist - New data classified to existing groups ## Clustering No groups of data exist Create groups from data close to each other #### Regression Identify a line with a certain slope describing the data Research with applications of classifications were presented before in RDA (e.g. remote sensing) # Selected Clustering Methods ## K-Means Clustering – Centroid based clustering Partitions a data set into K distinct clusters (centroids can be artificial) ## K-Medoids Clustering – Centroid based clustering (variation) Partitions a data set into K distinct clusters (centroids are actual points) ## Sequential Agglomerative hierarchic nonoverlapping (SAHN) ■ Hiearchical Clustering (create tree-like data structure → 'dendrogram') ## Clustering Using Representatives (CURE) Select representative points / cluster; as far from one another as possible ## Density-based spatial clustering of applications + noise (DBSCAN) Reasoning: density similiarity measure helpful in our driving applications Assumes clusters of similar density or areas of higher density in dataset # Technology Review of Available 'Big Data 'Tools | Technology | Platform Approach | Analysis | |--|-------------------|--| | HPDBSCAN | C; MPI; OpenMP | Parallel, hybrid, DBSCAN | | (authors implementation) | _ | | | Apache Mahout | Java; Hadoop | K-means variants, spectral,
no DBSCAN | | Apache Spark/MLlib | Java; Spark | Only k-means clustering,
No DBSCAN | | scikit-learn | Python | No parallelization strategy for DBSCAN | | Northwestern University
PDSDBSCAN-D | C++; MPI; OpenMP | Parallel DBSCAN | [2] M. Goetz, M. Riedel et al., "On Parallel and Scalable Classification and Clustering Techniques for Earth Science Datasets, 6th Workshop on Data Mining in Earth System Science, International Conference of Computational Science (ICCS) # Parallel & Scalable HP-DBSCAN Open Source Tool #### Parallelization Strategy - Smart 'Big Data' Preprocessing into Spatial Cells ('indexed') - OpenMP standalone - MPI (+ optional OpenMP hybrid) ## **Preprocessing Step** - Spatial indexing and redistribution according to the point localities - Data density based chunking of computations [1] M.Goetz & C. Bodenstein, HPDBSCAN Tool Download ## **Computational Optimizations** [2] M. Goetz, M. Riedel et al., 6th Workshop on Data Mining in Earth System Science, ICCS 2015 - Caching of point neighborhood searches - Cluster merging based on comparisons instead of zone reclustering # Clustering Applications – Large Point Clouds #### 'Big Data': 3D/4D laser scans - Captured by robots or drones - Millions to billion entries - Inner cities (e.g. Bremen inner city) - Whole countries (e.g. Netherlands) #### Selected Scientific Cases - Filter noise to better represent real data - Grouping of objects (e.g. buildings) Interest? Become H2020 Project Proposal User Advisory Board member → Contact me today > Research activities in collaboration with the Netherlands e-Science Centre & TU Delft # Clustering Applications – Many Time Series & Events #### Earth Science Data Repository - Time series measurements (e.g. salinity) - Millions to billions of data items/locations - Less capacity of experts to analyse data Total number of data sets 349 871 Data items ~ 7.9 billions #### Selected Scientific Case - Data from Koljöfjords in Sweden (Skagerrak) - Each measurement small data, but whole 'big data' - Automated water mixing event detection & quality control (e.g. biofouling) - Verification through domain experts Research activities in collaboration with MARUM in Bremen and University of Gothenburg # Clustering Applications – Neuro Science Image Analysis #### Large Brain Images - High resolution scans of post mortem brains - Rare 'groundtruth available' #### Selected Scientific Case - Cell nuclei detection and tissue clustering - Detect various layers (colored) - Layers seem to have different density distribution of cells - Extract cell nuclei into 2D/3D point cloud - Cluster different brain areas by cell density Research activities in collaboration with Institute of Medicine and Neuroscience (T. Dickscheid) #### References [1] M.Goetz & C. Bodenstein, Clustering Highly Parallelizable DBSCAN Algorithm, JSC, Online: http://www.fz-juelich.de/ias/jsc/EN/Research/DistributedComputing/DataAnalytics/Clustering/Clustering_node.html [2] M. Goetz, M. Riedel et al., On Parallel and Scalable Classification and Clustering Techniques for Earth Science Datasets' 6th Workshop on Data Mining in Earth System Science, Proceedings of the International Conference of Computational Science (ICCS), Reykjavik, Online: http://www.proceedings.com/26605.html Contact: m.riedel@fz-juelich.de ## Acknowledgements PhD Student Gabriele Cavallaro, University of Iceland Tómas Philipp Runarsson, University of Iceland Kristján Jonasson, University of Iceland Timo Dickscheid, Markus Axer, Stefan Köhnen, Tim Hütz, Institute of Neuroscience & Medicine, Forschungszentrum Juelich Selected Members of the Research Group on High Productivity Data Processing Ahmed Shiraz Memon Mohammad Shahbaz Memon Markus Goetz Christian Bodenstein Philipp Glock Matthias Richerzhagen Contact: m.riedel@fz-juelich.de #### **Thanks** Slides available at http://www.morrisriedel.de/talks Contact: m.riedel@fz-juelich.de